|
|
|
|
| LEADER |
01576nam a22003135a 4500 |
| 001 |
36314 |
| 003 |
AR-SrUBC |
| 005 |
20210617181751.0 |
| 007 |
t||||||||||||| |
| 008 |
130218m||||||||enk#||||r|||||||||||eng|| |
| 020 |
|
|
|a 0198534213
|
| 020 |
|
|
|a 9780198534211
|
| 040 |
|
|
|a AR-SrUBC
|b eng
|e rcaa2
|
| 080 |
|
|
|a 512.643=20
|2 2000 ES
|
| 100 |
1 |
|
|a Duff, Iain S.
|9 73638
|
| 245 |
1 |
0 |
|a Direct methods for sparse matrices.
|c I.S. Duff, A.M. Erisman, J.K. Reid.
|
| 260 |
|
|
|a Oxford :
|b Clarendon Press,
|c 1990.
|
| 300 |
|
|
|a xiv, 341 p. ;
|c 24 cm.
|
| 336 |
|
|
|a texto
|2 rdacontent
|
| 337 |
|
|
|a sin mediación
|2 rdamedia
|
| 338 |
|
|
|a volumen
|2 rdacarrier
|
| 490 |
|
0 |
|a Monographs on numerical analysis
|
| 505 |
0 |
0 |
|a Contenido: Introduction. Sparse matrices: storage schemes and simple operations. Gaussian elimination for dense matrices: the algebraic problem. Gaussian elimination for matrices: numerical considerations. Gaussian elimination for sparse matrices: an introduction. Reduction to block triangular form. Local pivotal strategies for sparse matrices. Ordering sparse matrices to special forms. Implementing gaussian elimination: ANALYSE with numerical values. Implementing gaussian elimination with symbolic ANALYSE. Partitioning, matrix modification, and tearing. Other sparsity-oriented issues. Appendix.
|
| 650 |
|
7 |
|a MATRICES (MATEMATICAS)
|2 lemb3
|9 2162
|
| 650 |
|
7 |
|a ALGEBRA
|2 lemb3
|9 2971
|
| 700 |
1 |
|
|a Erisman, A.M.
|9 73639
|
| 700 |
1 |
|
|a Reid, John Ker
|9 73640
|
| 942 |
|
|
|2 cdu
|b 2013-02-18
|c BK
|d 039279
|h 512.643=20
|i DUFd
|z NO
|6 51264320_DUFD
|
| 999 |
|
|
|c 36314
|d 36314
|