|
|
|
|
| LEADER |
01583nam a22003015a 4500 |
| 001 |
34653 |
| 003 |
AR-SrUBC |
| 005 |
20210617180947.0 |
| 007 |
t||||||||||||| |
| 008 |
110517m||||||||gw #||||r|||||||||||eng|| |
| 020 |
|
|
|a 3540251774
|
| 020 |
|
|
|a 9783540251774
|
| 020 |
|
|
|a 9783540264743 (Online)
|
| 040 |
|
|
|a AR-SrUBC
|b eng
|e rcaa2
|
| 080 |
|
|
|a 512.5=20
|2 2000 ES
|
| 100 |
1 |
|
|a Shafarevich, Igor R.
|9 69867
|
| 245 |
1 |
0 |
|a Basic notions of algebra.
|c Igor R. Shafarevich.
|
| 260 |
|
|
|a Berlin :
|b Springer,
|c 2005.
|
| 300 |
|
|
|a 258 p. ;
|c 24 cm.
|
| 336 |
|
|
|a texto
|2 rdacontent
|
| 337 |
|
|
|a sin mediación
|2 rdamedia
|
| 338 |
|
|
|a volumen
|2 rdacarrier
|
| 490 |
|
0 |
|a Encyclopaedia of mathematical sciences ;
|v 11. Algebra I
|
| 505 |
0 |
0 |
|a Contenido: What is algebra? -- Fields -- Commutative rings -- Homomorphings and ideals -- Modules -- Algebraic aspects of dimension -- The algebraic view of infinitesimal notions -- Noncommutative rings -- Modules over noncommutative rings -- Semisimple modules and rings -- Division algebras of finite rank -- The notion of a group -- Examples of groups: finite groups -- Infinite discrete groups -- Lie groups and algebraic groups -- General result of group theory -- Group representations -- Some applications of groups -- Lie algebras and nonassociative algebra -- Categories -- Homological algebra -- K-theory.
|
| 534 |
|
|
|t Itogi nauki i tekhniki, sovremennye problemy matematiki / translted by M. Reid
|
| 650 |
|
7 |
|a ALGEBRA
|2 lemb3
|9 2971
|
| 942 |
|
|
|2 cdu
|b 2011-05-17
|c BK
|d 037322
|h 512.5=20
|i SHAb
|z MK
|6 512520_SHAB
|
| 999 |
|
|
|c 34653
|d 34653
|