Basic notions of algebra.

Guardado en:
Detalles Bibliográficos
Autor principal: Shafarevich, Igor R.
Formato: Libro
Lenguaje:Inglés
Publicado: Berlin : Springer, 2005.
Colección:Encyclopaedia of mathematical sciences ; 11. Algebra I
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 01583nam a22003015a 4500
001 34653
003 AR-SrUBC
005 20210617180947.0
007 t|||||||||||||
008 110517m||||||||gw #||||r|||||||||||eng||
020 |a 3540251774 
020 |a 9783540251774 
020 |a 9783540264743 (Online) 
040 |a AR-SrUBC  |b eng  |e rcaa2 
080 |a 512.5=20  |2 2000 ES 
100 1 |a Shafarevich, Igor R.  |9 69867 
245 1 0 |a Basic notions of algebra.   |c Igor R. Shafarevich. 
260 |a Berlin :   |b Springer,   |c 2005. 
300 |a 258 p. ;   |c 24 cm. 
336 |a texto  |2 rdacontent 
337 |a sin mediación  |2 rdamedia 
338 |a volumen  |2 rdacarrier 
490 0 |a Encyclopaedia of mathematical sciences ;  |v 11. Algebra I 
505 0 0 |a Contenido: What is algebra? -- Fields -- Commutative rings -- Homomorphings and ideals -- Modules -- Algebraic aspects of dimension -- The algebraic view of infinitesimal notions -- Noncommutative rings -- Modules over noncommutative rings -- Semisimple modules and rings -- Division algebras of finite rank -- The notion of a group -- Examples of groups: finite groups -- Infinite discrete groups -- Lie groups and algebraic groups -- General result of group theory -- Group representations -- Some applications of groups -- Lie algebras and nonassociative algebra -- Categories -- Homological algebra -- K-theory.  
534 |t Itogi nauki i tekhniki, sovremennye problemy matematiki / translted by M. Reid 
650 7 |a ALGEBRA  |2 lemb3  |9 2971 
942 |2 cdu  |b 2011-05-17  |c BK  |d 037322  |h 512.5=20  |i SHAb  |z MK  |6 512520_SHAB 
999 |c 34653  |d 34653