|
|
|
|
| LEADER |
01175nam a22002895a 4500 |
| 001 |
23911 |
| 003 |
AR-SrUBC |
| 005 |
20210617165306.0 |
| 007 |
t||||||||||||| |
| 008 |
010113t|||||||||||a||||r|||||||||||spa|| |
| 020 |
|
|
|a 0122384407
|
| 040 |
|
|
|a AR-SrUBC
|b spa
|e rcaa2
|
| 080 |
|
|
|a 510.22=20
|2 2000 ES
|
| 100 |
1 |
|
|a Enderton, Herbert B.
|9 45700
|
| 245 |
1 |
0 |
|a Elements of set theory.
|c Herbert B. Enderton.
|
| 260 |
|
|
|a San Diego, Calif. :
|b Academic Press,
|c c1977.
|
| 300 |
|
|
|a xiv, 279 p. :
|b il., diagrs. ;
|c 23 cm.
|
| 336 |
|
|
|a texto
|2 rdacontent
|
| 337 |
|
|
|a sin mediación
|2 rdamedia
|
| 338 |
|
|
|a volumen
|2 rdacarrier
|
| 505 |
0 |
0 |
|a Contenido: Introduction. Axioms and operations. Relations and functions. Natural numbers. Construction of the real numbers. Cardinal numbers and the axiom. Orderings and ordinals. Ordinals and order types. Special topics. Appendix: Notation, logic, and proofs.
|
| 650 |
|
7 |
|a AXIOMAS
|2 lemb3
|9 45701
|
| 650 |
|
7 |
|a NUMEROS REALES
|2 lemb3
|9 5383
|
| 650 |
|
7 |
|a NUMEROS NATURALES
|2 lemb3
|9 45702
|
| 650 |
|
7 |
|a TEORIA DE CONJUNTOS
|2 lemb3
|9 7599
|
| 942 |
|
|
|2 cdu
|b 2001-01-13
|c BK
|d 025736
|h 510.22=20
|i ENDe
|z MI
|6 5102220_ENDE
|
| 999 |
|
|
|c 23911
|d 23911
|