Partial differential equations in classical mathematical physics.

Guardado en:
Detalles Bibliográficos
Autor principal: Rubinstein, Isaak
Otros Autores: Rubinstein, Lev
Formato: Libro
Lenguaje:Inglés
Publicado: Cambridge : Cambridge University Press, 1993.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02383nam a22003015a 4500
001 19272
003 AR-SrUBC
005 20210617144807.0
007 t|||||||||||||
008 990317m||||||||enka||||r|||||||||||eng||
020 |a 0521558468 (paperback) 
020 |a 0521420584 
040 |a AR-SrUBC  |b eng  |e rcaa2 
080 |a 517.94=20 
080 |a 530.1=20  |2 3a Abr ES 
100 1 |a Rubinstein, Isaak.   |9 37050 
245 1 0 |a Partial differential equations in classical mathematical physics.   |c Isaak Rubinstein, Lev Rubinstein. 
260 |a Cambridge :   |b Cambridge University Press,   |c 1993. 
300 |a xiv, 677 p. :   |b il. ;   |c 25 cm. 
336 |a texto  |2 rdacontent 
337 |a sin mediación  |2 rdamedia 
338 |a volumen  |2 rdacarrier 
505 0 0 |a Contenido: Introduction. Typical equations of mathematical physics. Boundary conditions. Cauchy problem for first-order partial differential equations. Classification of second-order partial differential equations with linear principal part. Elements of the theory of characteristics. Cauchy and mixed problems for the wave equation in R1. Method of traveling waves. Cauchy and Goursat problems for a second-order linear hyperbolic equation with two independent variables. Riemann's method. Cauchy problem for a 2-dimensional wave equation. The Volterra-D'Adhemar solution. Cauchy problem for the wave equation in R3. Methods of averaging and descent. Huygens's principle. Basic properties of harmonic functions. Green's functions. Sequences of harmonic functions. Perron's theorem. Schwarz alternatig method. Outer boundary-value problems. Elements of potential theory. Cauchy problem for heat-conduction equation. Maximum principle for parabolic equations. Application of Green's formulas. Fundamental identity. Gree's functions for Fourier equation. Heat potentials. Volterra integral equations and their application to solution of boundary-value problems in heat-conduction theory. Sequences of parabolic functions. Fourier method for bounded regions. Integral transform method in unbounded regions. Asymptotic expansions. Asymptotic solution of boundary-value problems. Appendix.  
650 7 |a ECUACIONES DIFERENCIALES PARCIALES  |2 lemb2  |9 15496 
650 7 |a FISICA MATEMATICA  |2 lemb2  |9 7311 
700 1 |a Rubinstein, Lev  |9 37051 
942 |2 cdu  |b 1999-03-17  |c BK  |d 020402  |h 517.9=20  |i RUBp  |z NO  |6 517920_RUBP 
999 |c 19272  |d 19272