|
|
|
|
LEADER |
01719cam a22002897a 4500 |
001 |
004461 |
003 |
armpuni |
005 |
20160923153929.0 |
008 |
160923s1996####xx#a##########000#0#und#d |
040 |
|
|
|a armpuni
|c armpuni
|
041 |
|
|
|a en
|
080 |
|
|
|a 621.372
|
100 |
1 |
|
|a Haykin, Simon
|
245 |
1 |
0 |
|a Adaptive filter theory /
|c Simon Haykin
|
250 |
|
|
|a third edition
|
260 |
|
|
|a New Jersey :
|b Prentice Hall,
|c 1996
|
300 |
|
|
|a xii, 989 p.:
|b il.;
|c 23 cm.
|
500 |
|
|
|a abbreviations p. 932
|
500 |
|
|
|a Appendix p.
|
500 |
|
|
|a Bibliography p. 941
|
500 |
|
|
|a Incluye glosario p. 928
|
500 |
|
|
|a Principal symbols p. 933
|
550 |
|
|
|a Linear filter structures. Backround material.Discrete-time signal processing. Stationary processes and models. Spectrum analysis. Eigenanalysis. Linear optimum filtering. Wiener filters. Linear prediction. Kalman filters. Linear adaptive filtering. Method of steepes descent. Least-Mean-Square algorithm. Frequency-domain adaptive filters. Method of least squares. Rotations and reflections. Recursive least-squares algorithm. Square-Root Adaptive filters. Order-recursive adaptive filters. Tracking of time-varyng systems. Finite-precision effects. Nonlinear adaptive filtering. Blind deconvolution. Back-propagation learning. Radial basis function networks. Complex variables. Differentiation with respect to a vector. Methods of lagrange multipliers. Estimation theory. Maximum-entropy method. Minimum-variance distortionless response spectrum. Grandient adaptive lattice algorithm. Steady-state analysis of the LMS Algorithm without invoking the independence assumption.
|
650 |
|
7 |
|a FILTROS
|2 LEMB
|
942 |
|
|
|c LB
|2 cdu
|
945 |
|
|
|a MDC
|d 1999-09-14
|
999 |
|
|
|c 4460
|d 5635
|