|
|
|
|
| LEADER |
02001nam a2200289a 44500 |
| 001 |
UBP10651 |
| 003 |
AR-CdUBP |
| 005 |
20220310155555.0 |
| 008 |
060913s1955 nyu f 001 eng d |
| 040 |
|
|
|a AR-CdUBP
|b spa
|
| 041 |
|
|
|a eng
|
| 100 |
|
|
|a Coddington, Earl A.
|
| 245 |
1 |
0 |
|a Theory of ordinary differential equations /
|c Earl A. Coddington, Norman Levinson.
|
| 260 |
|
|
|a New York :
|b McGraw-Hill,
|c 1955
|
| 300 |
|
|
|a xii, 429 p. ;
|c 23 cm.
|
| 504 |
|
|
|a Indice: p. 423-429.
|
| 504 |
|
|
|a Bibliografía: p. 415-422.
|
| 505 |
0 |
|
|a Chapter 1. Existence and uniqueness of solutions. Chapter 2. Existence and uniqueness of solutions (continued). Chapter 3. Linear differential equations. Chapter 4. Linear systems with isolated singularities: singularities of the first kind. Chapter 5. Linear systems with isolated siingularities: singularities of the second kind. Chapter 6. Asymptotic bahavior of linear systems containing a large parameter. Chapter 7. Self-adjoint eigenvalue problems on a finite interval. Chapter 8. Oscilation and comparison. Theorems for second-order linear equations and applications. Chapter 9. Singular sel-adjoint boundary-value. Problems for second-order equations. Chapter 10. Singular self-adjoint boundary-value. Problems for nth-order equations. Chapter 11. Algebraic properties of linear boundary-value. Problems on a finite interval. Chapter 12. Non-self af}djoint boundary-value problems. Chapter 13. Asymptotic behavior of nonlinear systems: stability. Chapter 14. Perturbation of systems having a periodic solution. Chapter 15. Perturbation theory of two-dimensional real autonomous systems. Chapter 16. The poincare-bendixson theory of two-dimensional autonomous systems. Chapter 17. differential equations on a torus.
|
| 650 |
|
4 |
|a ECUACIONES DIFERENCIALES
|
| 653 |
|
|
|a MATEMATICAS
|
| 700 |
1 |
|
|a Levinson, Norman
|
| 930 |
|
|
|a MATEMATICAS
|
| 931 |
|
|
|a 10651
|b UBP
|
| 942 |
|
|
|2 cdu
|c BK
|
| 945 |
|
|
|a JPG
|
| 984 |
|
|
|a 517.9
|b C648
|
| 999 |
|
|
|c 25923
|d 25923
|