Introductory complex analysis /

Guardado en:
Detalles Bibliográficos
Autor principal: Silverman, Richard A.
Formato: Libro
Lenguaje:Inglés
Publicado: Englewood Cliffs, New Jersey : Prentice-Hall, 1967
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 01397nam a2200265a 44500
001 UBP06138
003 AR-CdUBP
005 20220310153537.0
008 151212s1967#######|||||||||||||||||eng|d
040 |a AR-CdUBP  |b spa 
041 |a eng 
100 |a Silverman, Richard A. 
245 1 0 |a Introductory complex analysis /   |c Richard A. Silverman 
260 |a Englewood Cliffs, New Jersey :   |b Prentice-Hall,   |c 1967 
300 |a xi, 372 p. ;   |a 23 cm. 
504 |a Bibliografía: p. 363 
505 0 |a Chapter 1. Complex numbers, functions and sequences. Chapter 2. Limits and continuity. Chapter 3. Differentiation. Analytic functions. Chapter 4. Polynomials and rational functions. Chapter 5. Möbius transformation. Chapter 6. Exponentials and logarithms. Chapter 7. Complex integrals. Cauchy's integral theorem. Chapter 8. Cauchy's integral formula and its implications. Chapter 9. Complex series. Uniform convergence. Chapter 10. Power series. Chapter 11. Laurent series. Singular points. Chapter 12. The residue theorem and its implications. Chapter 13. Harmonic functions. Chapter 14. Infinite product and pratial fraction expansions. Chapter 15. Conformal mapping. Chapter 16. Analytic continuation. 
650 4 |a ANALISIS MATEMATICO 
653 |a MATEMATICAS 
930 |a MATEMATICAS 
931 |a 06138  |b UBP 
942 |2 cdu  |c BK 
945 |a EBA 
984 |a 517  |b Si39i 
999 |c 21674  |d 21674