|
|
|
|
| LEADER |
01481nam a2200253a 44500 |
| 001 |
UBP06131 |
| 003 |
AR-CdUBP |
| 005 |
20220310153535.0 |
| 008 |
151212s1955#######|||||||||||||||||eng|d |
| 040 |
|
|
|a AR-CdUBP
|b spa
|
| 041 |
|
|
|a eng
|
| 100 |
|
|
|a Taylor, Angus E.
|
| 245 |
1 |
0 |
|a Advanced Calculus /
|c Angus E. Taylor
|
| 260 |
|
|
|a Boston :
|b Ginn,
|c 1955
|
| 300 |
|
|
|a xiii, 786 p. ;
|c 23 cm.
|
| 505 |
0 |
|
|a Chapter I. Fundamentals of elementary calculus. Chapter II. The real number system. Chapter III. Continuos functions. Chapter IV. Extensions of the law of the mean. Chapter V. Functions of serveral variables. Chapter VI. The elements of partial differentiation. Chapter VII. General theorems of partial differentiation. Chapter VIII. Implicit-function theorems. Chapter IX. Transformations and mappings. Chapter X. Vectors and vector fields. Chapter XI. Double and triple integrals. Chapter XII. Curves and surfaces. Chapter XIII. Line and surface integrals. Chapter XIV. Point-set theory. Chapter XV. Fundamental theorems on continuous functions. Chapter XVI: The theory of integration. Chapter XVII. Infinite series. Chapter XVIII. Uniform convergence. Chapter XIX. Power series. Chapter XX. Improper integrals. Chapter XXI. Complex functions. Chapter XXII. Fourier series and integrals.
|
| 650 |
|
4 |
|a CALCULO
|
| 653 |
|
|
|a MATEMATICAS
|
| 930 |
|
|
|a MATEMATICAS
|
| 931 |
|
|
|a 06131
|b UBP
|
| 942 |
|
|
|2 cdu
|c BK
|
| 945 |
|
|
|a EBA
|
| 984 |
|
|
|a 517.1
|b T212
|
| 999 |
|
|
|c 21667
|d 21667
|