|
|
|
|
| LEADER |
01841nam a2200265a 44500 |
| 001 |
UBP04689 |
| 003 |
AR-CdUBP |
| 005 |
20220310152906.0 |
| 008 |
151212s1983#######|||||||||||||||||eng|d |
| 020 |
|
|
|a 0-03-059522-3
|
| 040 |
|
|
|a AR-CdUBP
|b spa
|
| 041 |
|
|
|a eng
|
| 100 |
|
|
|a Berkey, Dennis D.
|
| 245 |
1 |
0 |
|a Calculus /
|c Dennis D. Berkey
|
| 260 |
|
|
|a New York :
|b Saunders,
|c 1983
|
| 300 |
|
|
|a xvi, 1098 p. ;
|c 22 cm. +
|e 1 manual de soluciones
|
| 505 |
0 |
|
|a Unit 1. PREELIMINARY NOTIONS. Chapter 1. Review of precalculus concepts. Chapter 2. Limits of functions. Unit 2. DIFFERENTIATION. Chapter 3. The derivative. Chapter 4. Applications of the derivative: rates and optimization. Chapter 5. Geometric applications of the derivative. Unit 3. INTEGRATION. Chapter 6. The definite integral. Chapter 7. Mathematical applications of the definite integral. Chapter 8. Further applications of the definite integral. Unit 4. THE TRANSCENDENTAL FUNCTIONS. Chapter 9. Logarithmic and exponential functions. Chapter 10. Trigonometric and inverse trigonometric functions. Chapter 11. Techniques of integration. Unit 5. THE THEORY OF INFINITE SERIES. Chapter 12. The approximation problem: taylor polynomials. Chapter 13. The theory of infinite series. Chapter 14. Power series. Unit 6. GEOMETRY IN THE PLANE AND IN SPACE. Chapter 15. The conic sections. Chapter 16. Polar coordinates and parametric equations. Chapter 17. Vectors and space coordinates. Unit 7. CALCULUS IN HIGHER DIMENSIONS. Chapter 18. Vector-valued functions. Chapter 19. Differentiations for functions of several variables. Chapter 20. Double and tirple integrals. Chapter 21. Vector analysis.
|
| 650 |
|
4 |
|a CALCULO
|
| 653 |
|
|
|a MATEMATICAS
|
| 930 |
|
|
|a MATEMATICAS
|
| 931 |
|
|
|a 04689
|b UBP
|
| 942 |
|
|
|2 cdu
|c BK
|
| 945 |
|
|
|a SMM
|
| 984 |
|
|
|a 517
|b B452
|
| 999 |
|
|
|c 20252
|d 20252
|