|
|
|
|
| LEADER |
01802nam a2200289a 44500 |
| 001 |
UBP00459 |
| 003 |
AR-CdUBP |
| 005 |
20220310150853.0 |
| 008 |
151212s1973#######|||||||||||||||||eng|d |
| 020 |
|
|
|a 0-03-091492-2
|
| 040 |
|
|
|a AR-CdUBP
|b spa
|
| 041 |
|
|
|a eng
|
| 100 |
|
|
|a Shanks, Merrill E.
|
| 245 |
1 |
0 |
|a Calculus :
|b analytic geometry. Elementary functions /
|c Merrill E. Shanks, Robert Gambill.
|
| 260 |
|
|
|a New York :
|b Holt, Rinehart and Winston,
|c 1973
|
| 300 |
|
|
|a xiv, 748 p. ;
|c 23 cm.
|
| 505 |
0 |
|
|a Part I. PRECALCULUS TOPICS. 1. Functions. 2. Algebraic functions. 3. Exponential and logarithmic functions. 4. The trigonometric functions. 5. Lines: equations of the first degree. 6. Curves of the second degree. 7. Polar coordinates. 8. Vectors in the plane. Part II. DIFFERENTIAL CALCULUS. 9. The derivative. 10. The technique of differentiation. 11. Implicit differentiation, higher derivatives. 12. Applications of the derivative to graphing. 13. Applications: maxima and minima, rates. 14. Plane curves and motion on them. 15. The mean value theorem, indeterminate forms, Taylor's formula. 16. Taylor's series. Part III. INTEGRAL CALCULUS. 17. The definite integral. 18. The technique of integration. 19. Further integration techniques. 20. Applications of integration. 21. Theory of infinite series. Part IV. MULTIVARIATE CALCULUS. 22. Analytic geometry of space. 23. Vectors in space. 24. Derivatives and space. 25. Multiple integrals. Appendix A. A collection of formulas and figures. Appendix B. Numerical and integral tables.
|
| 650 |
|
4 |
|a CALCULO
|
| 650 |
|
4 |
|a GEOMETRIA ANALITICA
|
| 653 |
|
|
|a MATEMATICAS
|
| 700 |
1 |
|
|a Gambill, Robert
|
| 930 |
|
|
|a MATEMATICAS
|
| 931 |
|
|
|a 00459
|b UBP
|
| 942 |
|
|
|2 cdu
|c BK
|
| 945 |
|
|
|a EBA
|
| 984 |
|
|
|a 517
|b Sh18
|
| 999 |
|
|
|c 16075
|d 16075
|