The efferent medial olivocochlear-hair cell synapse

Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Elgoyhen, A.B
Otros Autores: Katz, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 39617caa a22029897a 4500
001 PAPER-9972
003 AR-BaUEN
005 20230518203958.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84858190504 
024 7 |2 cas  |a acetylcholine, 51-84-3, 60-31-1, 66-23-9; Receptors, Nicotinic 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JHYSE 
100 1 |a Elgoyhen, A.B. 
245 1 4 |a The efferent medial olivocochlear-hair cell synapse 
260 |c 2012 
270 1 0 |m Elgoyhen, A.B.; INGEBI-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina; email: elgoyhen@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Albert, J.T., Winter, H., Schaechinger, T.J., Weber, T., Wang, X., He, D.Z., Hendrich, O., Oliver, D., Voltage-sensitive prestin orthologue expressed in zebrafish hair cells (2007) J. Physiol., 580, pp. 451-461 
504 |a Art, J., Fettiplace, R., Fuchs, P., Synaptic hyperpolarization and inhibition of turtle cochlear hair cells (1984) J. Physiol. (Lond.), 365, pp. 525-550 
504 |a Ashmore, J.F., Russell, I.J., Sensory and effector functions of vertebrate hair cells (1983) J. Submicrosc. Cytol., 15, pp. 163-166 
504 |a Ballestero, J.A., Plazas, P.V., Kracun, S., Gomez-Casati, M.E., Taranda, J., Rothlin, C.V., Katz, E., Elgoyhen, A.B., Effects of quinine, quinidine, and chloroquine on alpha9alpha10 nicotinic cholinergic receptors (2005) Mol. Pharmacol., 68, pp. 822-829 
504 |a Berkefeld, H., Fakler, B., Schulte, U., Ca 2+-activated K + channels: from protein complexes to function (2010) Physiol. Rev., 90, pp. 1437-1459 
504 |a Bertrand, D., Galzi, J., Devillers-Thiery, A., Bertrand, S., Changeux, J., Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 6971-6975 
504 |a Beutner, D., Moser, T., The presynaptic function of mouse cochlear inner hair cells during development of hearing (2001) J. Neurosci., 21, pp. 4593-4599 
504 |a Blanchet, C., Erostegui, C., Sugasawa, M., Dulon, D., Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors (1996) J. Neurosci., 16, pp. 2574-2584 
504 |a Bond, C.T., Herson, P.S., Strassmaier, T., Hammond, R., Stackman, R., Maylie, J., Adelman, J.P., Small conductance Ca 2+-activated K + channel knock-out mice reveal the identity of calcium-dependent after hyperpolarization currents (2004) J. Neurosci., 24, pp. 5301-5306 
504 |a Borst, J.G., Sakmann, B., Calcium influx and transmitter release in a fast CNS synapse (1996) Nature, 383, pp. 431-434 
504 |a Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S., Patrick, J., Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit (1986) Nature, 319, pp. 368-374 
504 |a Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S., Patrick, J., Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family (1987) Proc. Natl. Acad. Sci. USA, 84, pp. 7763-7767 
504 |a Brigande, J.V., Heller, S., Quo vadis, hair cell regeneration? (2009) Nat. Neurosci., 12, pp. 679-685 
504 |a Brownell, W., Bader, C., Bertrand, D., de Ribaupierre, Y., Evoked mechanical responses of isolated cochlear hair cells (1985) Science, 227, pp. 194-196 
504 |a Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J., Gunther, W., Seeburg, P., Sakmann, B., Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor (1992) Science, 257, pp. 1415-1419 
504 |a Cabanillas, L.A., Luebke, A.E., CGRP- and cholinergic-containing fibers project to guinea pig outer hair cells (2002) Hearing Res., 172, pp. 14-17 
504 |a Caulfield, M.P., Birdsall, N.J., International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors (1998) Pharmacol. Rev., 50, pp. 279-290 
504 |a Chan, D.K., Hudspeth, A.J., Ca 2+ current-driven nonlinear amplification by the mammalian cochlea in vitro (2005) Nat. Neurosci., 8, pp. 149-155 
504 |a Churchill, J.A., Schuknecht, H.F., Doran, R., Acetylcholinesterase activity in the cochlea (1956) Laryngoscope, 66, pp. 1-15 
504 |a Couturier, S., Bertrand, D., Matter, J.-M., Hernandez, M.-C., Bertrand, S., Millar, N., Valera, S., Ballivet, M., A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX (1990) Neuron, 5, pp. 847-856 
504 |a Dallos, P., Cochlear amplification, outer hair cells and prestin (2008) Curr. Opin. Neurobiol., 18, pp. 370-376 
504 |a Dannhof, B.J., Roth, B., Bruns, V., Anatomical mapping of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in outer hair cell efferents in adult rats (1991) Cell Tissue Res., 266, pp. 89-95 
504 |a Delano, P.H., Elgueda, D., Hamame, C.M., Robles, L., Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas (2007) J. Neurosci., 27, pp. 4146-4153 
504 |a Deneris, E.S., Connolly, J., Boulter, J., Wada, E., Wada, K., Swanson, L.W., Patrick, J., Heinemann, S., Primary structure and expression of β2: a novel subunit of neuronal nicotinic acetylcholine receptors (1988) Neuron, 1, pp. 45-54 
504 |a Dent, J.A., Evidence for a diverse Cys-loop ligand-gated ion channel superfamily in early Bilateria (2006) J. Mol. Evol., 62, pp. 523-535 
504 |a Dodge, F.A., Rahamimoff, R., On the relationship between calcium concentration and the amplitude of the end-plate potential (1967) J. Physiol., 189, pp. 90P-92P 
504 |a Doi, T., Ohmori, H., Acetylcholine increases intracellular Ca 2+ concentration and hyperpolarizes the guinea-pig outer hair cell (1993) Hearing Res., 67, pp. 179-188 
504 |a Dolan, D.F., Nuttall, A.L., Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle (1988) J. Acoust. Soc. Am., 83, pp. 1081-1086 
504 |a Dulon, D., Lenoir, M., Cholinergic responses in developing outer hair cells of the rat cochlea (1996) Eur. J. Neurosci, 8, pp. 1945-1952 
504 |a Dulon, D., Luo, L., Zhang, C., Ryan, A.F., Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea (1998) Eur. J. Neurosci., 10, pp. 907-915 
504 |a Duvoisin, R.M., Deneris, E.S., Patrick, J., Heinemann, S., The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: β4 (1989) Neuron, 3, pp. 487-496 
504 |a Dzeja, C., Hagen, V., Kaupp, U.B., Frings, S., Ca 2+ permeation in cyclic nucleotide-gated channels (1999) EMBO J., 18, pp. 131-144 
504 |a Eggermont, J.J., Roberts, L.E., The neuroscience of tinnitus (2004) Trends Neurosci., 27, pp. 676-682 
504 |a Elgoyhen, A.B., Franchini, L.F., Prestin and the cholinergic receptor of hair cells: positively-selected proteins in mammals (2011) Hearing Res., 273, pp. 100-108 
504 |a Elgoyhen, A.B., Langguth, B., Pharmacological approaches to the treatment of tinnitus (2010) Drug Discov. Today, 15, pp. 300-305 
504 |a Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann, S., A9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells (1994) Cell, 79, pp. 705-715 
504 |a Elgoyhen, A.B., Vetter, D., Katz, E., Rothlin, C., Heinemann, S., Boulter, J., Alpha 10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells (2001) PNAS, USA, 98, pp. 3501-3506 
504 |a Elgoyhen, A.B., Katz, E., Fuchs, P.A., The nicotinic receptor of cochlear hair cells: a possible pharmacotherapeutic target? (2009) Biochem. Pharmacol., 78, pp. 712-719 
504 |a Ellison, M., Haberlandt, C., Gomez-Casati, M.E., Watkins, M., Elgoyhen, A.B., McIntosh, J.M., Olivera, B.M., Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR (2006) Biochemistry, 45, pp. 1511-1517 
504 |a Erostegui, C., Norris, C.H., Bobbin, R.P., In vitro characterization of a cholinergic receptor on outer hair cells (1994) Hearing Res., 74, pp. 135-147 
504 |a Evans, M., Acetylcholine activates two currents in guinea-pig outer hair cells (1996) J. Physiol., 491, pp. 563-578 
504 |a Eybalin, M., Neurotransmitters and neuromodulators of the mammalian cochlea (1993) Physiol. Rev., 73, pp. 309-373 
504 |a Eybalin, M., Altschuler, R.A., Immunoelectron microscopic localization of neurotransmitters in the cochlea (1990) J. Electron Microsc. Tech., 15, pp. 209-224 
504 |a Eybalin, M., Pujol, R., Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti (1987) Exp. Brain Res., 65, pp. 261-270 
504 |a Fedchyshyn, M.J., Wang, L.Y., Developmental transformation of the release modality at the calyx of Held synapse (2005) J. Neurosci., 25, pp. 4131-4140 
504 |a Flink, M.T., Atchison, W.D., Iberiotoxin-induced block of Ca 2+-activated K + channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals (2003) J. Pharmacol. Exp. Ther., 305, pp. 646-652 
504 |a Flock, A., Russell, I.J., The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota lota (1973) J. Physiol., 235, pp. 591-605 
504 |a Franchini, L.F., Elgoyhen, A.B., Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility (2006) Mol. Phylogen. Evol., 41, pp. 622-635 
504 |a Fuchs, P., Synaptic transmission at vertebrate hair cells (1996) Curr. Opin. Neurobiol., 6, pp. 514-519 
504 |a Fuchs, P.A., Murrow, B.W., Cholinergic inhibition of short (outer) hair cells of the chick's cochlea (1992) J. Neurosci., 12, pp. 800-809 
504 |a Fuchs, P.A., Murrow, B.W., A novel cholinergic receptor mediates inhibition of chick cochlear hair cells (1992) Proc. Roy. Soc. Lond. Ser. B, 248, pp. 35-40 
504 |a Galambos, R., Suppression of auditory nerve activity by stimulation of efferent fibers to the cochlea (1956) J. Neurophysiol., 19, pp. 424-437 
504 |a Gifford, M.L., Guinan, J.J., Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses (1987) Hearing Res., 29, pp. 179-194 
504 |a Glowatzki, E., Fuchs, P., Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea (2000) Science, 288, pp. 2366-2368 
504 |a Glowatzki, E., Fuchs, P., Transmitter release at the hair cell ribbon synapse (2002) Nat. Neurosci., 5, pp. 147-154 
504 |a Glowatzki, E., Wild, K., Brandle, U., Fakler, G., Fakler, B., Zenner, H.P., Ruppersberg, J.P., Cell-specific expression of the alpha 9 n-ACh receptor subunit in auditory hair cells revealed by single-cell RT-PCR (1995) Proc. Roy. Soc. Lond. Ser. B, 262, pp. 141-147 
504 |a Gomez-Casati, M.E., Fuchs, P.A., Elgoyhen, A.B., Katz, E., Biophysical and pharmacological characterization of nicotinic cholinergic receptors in cochlear inner hair cells (2005) J. Physiol., 566, pp. 103-118 
504 |a Goutman, J.D., Fuchs, P.A., Glowatzki, E., Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat (2005) J. Physiol., 566, pp. 49-59 
504 |a Guinan, J.J., (1996) Physiology of Olivocochlear Efferents. The Cochlea. Dallos, Popper and Fay, pp. 435-502. , Springer-Verlag, New York 
504 |a Guinan, J.J., Warr, W.B., Norris, B.E., Differential olivocochlear projections from lateral vs medial zones of the superior olivary complex (1983) J. Comput. Neurol., 221, pp. 358-370 
504 |a Gulley, R.L., Reese, T.S., Freeze-fracture studies on the synapses in the organ of Corti (1977) J. Comput. Neurol., 171, pp. 517-543 
504 |a He, D.Z., Cheatham, M.A., Pearce, M., Vetter, D.E., Mouse outer hair cells lacking the alpha9 ACh receptor are motile (2004) Brain Res. Dev. Brain Res., 148, pp. 19-25 
504 |a Hiel, H., Elgoyhen, A., Drescher, D., Morley, B., Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system (1996) Brain Res., 738, pp. 347-352 
504 |a Hiel, H., Luebke, A.E., Fuchs, P.A., Cloning and expression of the alpha9 nicotinic acetylcholine receptor subunit in cochlear hair cells of the chick (2000) Brain Res., 858, pp. 215-225 
504 |a Hirokawa, N., The ultrastructure of the basilar papilla of the chick (1978) J. Comput. Neurol., 181, pp. 361-374 
504 |a Housley, G.D., Ashmore, J.F., Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea (1991) Proc. Roy. Soc. Lond. Ser. B, 244, pp. 161-167 
504 |a Hudspeth, A., How hearing happens (1997) Neuron, 19, pp. 947-950 
504 |a Hudspeth, A.J., Making an effort to listen: mechanical amplification in the ear (2008) Neuron, 59, pp. 530-545 
504 |a Jia, S., He, D.Z., Motility-associated hair-bundle motion in mammalian outer hair cells (2005) Nat. Neurosci., 8, pp. 1028-1034 
504 |a Johnson, S.L., Adelman, J.P., Marcotti, W., Genetic deletion of SK2 channels in mouse inner hair cells prevents the developmental linearization in the Ca 2+ dependence of exocytosis (2007) J. Physiol., 583, pp. 631-646 
504 |a Kakehata, S., Nakagawa, T., Takasaka, T., Akaike, N., Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea (1993) J. Physiol. (Lond.), 463, pp. 227-244 
504 |a Karlin, A., Ion channel structure: emerging structure of the nicotinic acetylcholine receptors (2002) Nat. Rev. Neurosci., 3, pp. 102-114 
504 |a Karlin, A., Akabas, M., Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins (1995) Neuron, 15, pp. 1231-1244 
504 |a Katz, E., Verbitsky, M., Rothlin, C., Vetter, D., Heinemann, S., Elgoyhen, A., High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor (2000) Hearing Res., 141, pp. 117-128 
504 |a Katz, E., Elgoyhen, A.B., Gomez-Casati, M.E., Knipper, M., Vetter, D.E., Fuchs, P.A., Glowatzki, E., Developmental regulation of nicotinic synapses on cochlear inner hair cells (2004) J. Neurosci., 24, pp. 7814-7820 
504 |a Kawase, T., Delgutte, B., Liberman, M.C., Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones (1993) J. Neurophysiol., 70, pp. 2533-2549 
504 |a Kennedy, H.J., Crawford, A.C., Fettiplace, R., Force generation by mammalian hair bundles supports a role in cochlear amplification (2005) Nature, 433, pp. 880-883 
504 |a Kong, J.H., Adelman, J.P., Fuchs, P.A., Expression of the SK2 calcium-activated potassium channel is required for cholinergic function in mouse cochlear hair cells (2008) J. Physiol., 586, pp. 5471-5485 
504 |a Kujawa, S.G., Glattke, T.J., Fallon, M., Bobbin, R., A nicotinic-like receptor mediates suppression of distortion product otoacustic emissions by contralateral sound (1994) Hearing Res., 74, pp. 122-134 
504 |a Kuriyama, H., Shiosaka, S., Sekitani, M., Tohyama, Y., Kitajiri, M., Yamashita, T., Kumazawa, T., Tohyama, M., Electron microscopic observation of calcitonin gene-related peptide-like immunoreactivity in the organ of Corti of the rat (1990) Brain Res., 517, pp. 76-80 
504 |a Le Novere, N., Changeux, J., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells (1995) J. Mol. Evol., 40, pp. 155-172 
504 |a Le Novere, N., Corringer, P.J., Changeux, J.P., The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences (2002) J. Neurobiol., 53, pp. 447-456 
504 |a Liberman, M.C., The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury (1991) J. Neurophysiol., 65, pp. 123-132 
504 |a Lim, D.J., Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review (1986) Am. J. Otolaryngol., 7, pp. 73-99 
504 |a Lioudyno, M., Verbitsky, M., Holt, J., Elgoyhen, A., Guth, P., Morphine inhibits an a9-acetylcholine nicotinic receptor-mediated response by a mechanism which does not involve opioid receptors (2000) Hearing Res., 149, pp. 167-177 
504 |a Lioudyno, M.I., Verbitsky, M., Glowatzki, E., Holt, J.C., Boulter, J., Zadina, J.E., Elgoyhen, A.B., Guth, P.S., The alpha9/alpha10-containing nicotinic ACh receptor is directly modulated by opioid peptides, endomorphin-1, and dynorphin B, proposed efferent cotransmitters in the inner ear (2002) Mol. Cell. Neurosci., 20, pp. 695-711 
504 |a Lioudyno, M., Hiel, H., Kong, J.H., Katz, E., Waldman, E., Parameshwaran-Iyer, S., Glowatzki, E., Fuchs, P.A., A " synaptoplasmic cistern" mediates rapid inhibition of cochlear hair cells (2004) J. Neurosci., 24, pp. 11160-11164 
504 |a Lukas, R.J., Changeux, J.P., Le Novere, N., Albuquerque, E.X., Balfour, D.J., Berg, D.K., Bertrand, D., Wonnacott, S., International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits (1999) Pharmacol. Rev., 51, pp. 397-401 
504 |a Lustig, L., Hiel, H., Fuchs, P., Vestibular hair cells of the chick express the nicotinic acetylcholine receptor subunit alpha9 (1999) J. Vestib. Res., 9, pp. 359-367 
504 |a Lustig, L.R., Peng, H., Hiel, H., Yamamoto, T., Fuchs, P., Molecular cloning and mapping of the human nicotinic acetylcholine receptor α10 (CHRNA10) (2001) Genomics, 73, pp. 272-283 
504 |a Maison, S.F., Liberman, M.C., Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength (2000) J. Neurosci., 20, pp. 4701-4707 
504 |a Maison, S.F., Luebke, A.E., Liberman, M.C., Zuo, J., Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells (2002) J. Neurosci., 22, pp. 10838-10846 
504 |a Maison, S.F., Adams, J.C., Liberman, M.C., Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization (2003) J. Comput. Neurol., 455, pp. 406-416 
504 |a Maison, S.F., Emeson, R.B., Adams, J.C., Luebke, A.E., Liberman, M.C., Loss of alpha CGRP reduces sound-evoked activity in the cochlear nerve (2003) J. Neurophysiol., 90, pp. 2941-2949 
504 |a Maison, S.F., Rosahl, T.W., Homanics, G.E., Liberman, M.C., Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GABA(A) receptor subunits alpha 1, alpha 2, alpha 5, alpha 6, beta 2, beta 3, or delta (2006) J. Neurosci., 26, pp. 10315-10326 
504 |a Maison, S.F., Parker, L.L., Young, L., Adelman, J.P., Zuo, J., Liberman, M.C., Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance (2007) J. Neurophysiol., 97, pp. 2930-2936 
504 |a Manley, G.A., Koppl, C., Phylogenetic development of the cochlea and its innervation (1998) Curr. Opin. Neurobiol., 8, pp. 468-474 
504 |a Marcantoni, A., Baldelli, P., Hernandez-Guijo, J.M., Comunanza, V., Carabelli, V., Carbone, E., L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion (2007) Cell Calcium, 42, pp. 397-408 
504 |a Marcotti, W., Johnson, S.L., Kros, C.J., Effects of intracellular stores and extracellular Ca(2+) on Ca(2+)-activated K(+) currents in mature mouse inner hair cells (2004) J. Physiol., 557, pp. 613-633 
504 |a Marcotti, W., Johnson, S.L., Kros, C.J., A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells (2004) J. Physiol., 560, pp. 691-708 
504 |a May, B.J., Prosen, C.A., Weiss, D., Vetter, D., Behavioral investigation of some possible effects of the central olivocochlear pathways in transgenic mice (2002) Hearing Res., 171, pp. 142-157 
504 |a Mayer, M., Westbrook, G., Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones (1987) J. Physiol. (Lond.), 394, pp. 501-527 
504 |a McIntosh, J.M., Plazas, P.V., Watkins, M., Gomez-Casati, M.E., Olivera, B.M., Elgoyhen, A.B., A novel alpha-conotoxin, PeIA, cloned from Conus pergrandis, discriminates between rat alpha9alpha10 and alpha7 nicotinic cholinergic receptors (2005) J. Biol. Chem., 280, pp. 30107-30112 
504 |a McIntosh, J.M., Absalom, N., Chebib, M., Elgoyhen, A.B., Vincler, M., Alpha9 nicotinic acetylcholine receptors and the treatment of pain (2009) Biochem. Pharmacol., 78, pp. 693-702 
504 |a McNiven, A.I., Yuhas, W.A., Fuchs, P.A., Ionic dependence and agonist preference of an acetylcholine receptor in hair cells (1996) Audit. Neurosci., 2, pp. 63-77 
504 |a Mintz, I.M., Sabatini, B.L., Regehr, W.G., Calcium control of transmitter release at a cerebellar synapse (1995) Neuron, 15, pp. 675-688 
504 |a Morley, B., Li, H., Hiel, H., Drescher, D., Elgoyhen, A.B., Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization (1998) Mol. Brain Res., 53, pp. 78-87 
504 |a Moroni, M., Bermudez, I., Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types (2006) J. Mol. Neurosci., 30, pp. 95-96 
504 |a Mount, D.B., Romero, M.F., The SLC26 gene family of multifunctional anion exchangers (2004) Pflugers Arch., 447, pp. 710-721 
504 |a Murthy, V., Maison, S.F., Taranda, J., Haque, N., Bond, C.T., Elgoyhen, A.B., Adelman, J.P., Vetter, D.E., SK2 channels are required for function and long-term survival of efferent synapses on mammalian outer hair cells (2009) Mol. Cell. Neurosci., 40, pp. 39-49 
504 |a Murthy, V., Taranda, J., Elgoyhen, A.B., Vetter, D.E., Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs (2009) Dev. Neurobiol., 69, pp. 931-949 
504 |a Murugasu, E., Russell, I.J., The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea (1996) J. Neurosci., 16, pp. 325-332 
504 |a Nenov, A.P., Norris, C., Bobbin, R.P., Acetylcholine response in guinea pig outer hair cells. I. Properties of the response (1996) Hearing Res., 101, pp. 132-148 
504 |a Nenov, A.P., Norris, C., Bobbin, R.P., Acetylcholine responses in guinea pig outer hair cells. II. Activation of a small conductance Ca 2+-activated K + channel (1996) Hearing Res., 101, pp. 149-172 
504 |a Nevin, S.T., Clark, R.J., Klimis, H., Christie, M.J., Craik, D.J., Adams, D.J., Are alpha9alpha10 nicotinic acetylcholine receptors a pain target for alpha-conotoxins? (2007) Mol. Pharmacol., 72, pp. 1406-1410 
504 |a Oatman, L.C., Effects of visual attention on the intensity of auditory evoked potentials (1976) Exp. Neurol., 51, pp. 41-53 
504 |a Oliver, D., Klocker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J.P., Fakler, B., Gating of Ca 2+-activated K + channels controls fast inhibitory synaptic transmission at auditory outer hair cells (2000) Neuron, 26, pp. 595-601 
504 |a Plazas, P., Katz, E., Elgoyhen, A., Unconventional properties of an a9a10 nicotinic receptor mutated in the Leu9' of the channel domain (2002), 32nd Annual Meeting, Society for Neuroscience, Orlando, USA, 2002; Plazas, P.V., Katz, E., Gomez-Casati, M.E., Bouzat, C., Elgoyhen, A.B., Stoichiometry of the {alpha}9{alpha}10 Nicotinic Cholinergic Receptor (2005) J. Neurosci., 25, pp. 10905-10912 
504 |a Plazas, P.V., Savino, J., Kracun, S., Gomez-Casati, M.E., Katz, E., Parsons, C.G., Millar, N.S., Elgoyhen, A.B., Inhibition of the alpha9alpha10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-d-aspartate receptors (2007) Eur. J. Pharmacol., 566, pp. 11-19 
504 |a Rajan, R., Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound (2000) J. Neurosci., 6684, p. 6693 
504 |a Rasmussen, G.L., The olivary peduncle and other fiber projections of the superior olivary complex (1946) J. Comput. Neurol., 84, pp. 141-219 
504 |a Reid, C.A., Bekkers, J.M., Clements, J.D., Presynaptic Ca 2+ channels: a functional patchwork (2003) Trends Neurosci., 26, pp. 683-687 
504 |a Reiter, E.R., Liberman, M.C., Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation (1995) J. Neurophysiol., 73, pp. 506-514 
504 |a Rothlin, C., Verbitsky, M., Katz, E., Elgoyhen, A., The α9 nicotinic acetylcholine receptor shares pharmacological properties with type A γ-aminobutyric acid, glycine and type 3 serotonin receptors (1999) Mol. Pharmacol., 55, pp. 248-254 
504 |a Rothlin, C.V., Katz, E., Verbitsky, M., Vetter, D., Heinemann, S., Elgoyhen, A.B., Block of the α9 nicotinic receptor by ototoxic aminoglycosides (2000) Neuropharmacology, 39, pp. 2525-2532 
504 |a Rothlin, C.V., Lioudyno, M.I., Silbering, A.F., Plazas, P.V., Casati, M.E., Katz, E., Guth, P.S., Elgoyhen, A.B., Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors (2003) Mol. Pharmacol., 63, pp. 1067-1074 
504 |a Russell, I.J., Murugasu, E., Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities (1997) J. Acoust. Soc. Am., 102, pp. 1734-1738 
504 |a Saito, K., Fine structure of the sensory epithelium of guinea-pig organ of Corti: subsurface cisternae and lamellar bodies in the outer hair cells (1983) Cell Tissue Res., 229, pp. 467-481 
504 |a Schaechinger, T.J., Oliver, D., Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 7693-7698 
504 |a Schoepfer, R., Conroy, W.G., Whiting, P., Gore, M., Lindstrom, J., Brain α-bungarotoxin binding protein cDNAs and Mabs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily (1990) Neuron, 5, pp. 35-48 
504 |a Schuknecht, H.F., Churchill, J.A., Doran, R., The localization of acetylcholinesterase in the cochlea (1959) AMA Arch. Otolaryngol., 69, pp. 549-559 
504 |a Séguéla, P., Wadiche, J., Dineley-Miller, K., Dani, J.A., Patrick, J.W., Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium (1993) J. Neurosci., 13, pp. 596-604 
504 |a Sgard, F., Charpentier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., Bertrand, D., Besnard, F., A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit (2002) Mol. Pharmacol., 61, pp. 150-159 
504 |a Shigemoto, T., Ohmori, H., Muscarinic agonists and ATP increase the intracellular Ca 2+ concentration in chick cochlear hair cells (1990) J. Physiol. (Lond.), 420, pp. 127-148 
504 |a Shigemoto, T., Ohmori, H., Muscarinic receptor hyperpolarizes cochlear hair cells of chick by activating Ca(2+)-activated K + channels (1991) J. Physiol., 442, pp. 669-690 
504 |a Simmons, D.D., Development of the inner ear efferent system across vertebrate species (2002) J. Neurobiol., 53, pp. 228-250 
504 |a Simmons, D.D., Morley, B.J., Differential expression of the alpha 9 nicotinic acetylcholine receptor subunit in neonatal and adult cochlear hair cells (1998) Brain Res. Mol. Brain Res., 56, pp. 287-292 
504 |a Storm, J.F., Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells (1987) J. Physiol., 385, pp. 733-759 
504 |a Suckfull, M., Althaus, M., Ellers-Lenz, B., Gebauer, A., Gortelmeyer, R., Jastreboff, P.J., Moebius, H.J., Krueger, H., A randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of neramexane in patients with moderate to severe subjective tinnitus (2011) BMC Ear Nose Throat Disord., 11, p. 1 
504 |a Sugai, T., Yano, J., Sugitani, M., Ooyama, H., Actions of cholinergic agonists and antagonists on the efferent synapse in the frog sacculus (1992) Hearing Res., 61, pp. 56-64 
504 |a Tan, X., Pecka, J.L., Tang, J., Okoruwa, O.E., Zhang, Q., Beisel, K.W., He, D.Z., From zebrafish to mammal: functional evolution of prestin, the motor protein of cochlear outer hair cells (2011) J. Neurophysiol., 105, pp. 36-44 
504 |a Taranda, J., Ballestero, J.A., Hiel, H., de Souza, F.S., Wedemeyer, C., Gomez-Casati, M.E., Lipovsek, M., Elgoyhen, A.B., Constitutive expression of the alpha10 nicotinic acetylcholine receptor subunit fails to maintain cholinergic responses in inner hair cells after the onset of hearing (2009) J. Assoc. Res. Otolaryngol., 10, pp. 397-406 
504 |a Taranda, J., Maison, S.F., Ballestero, J.A., Katz, E., Savino, J., Vetter, D.E., Boulter, J., Elgoyhen, A.B., A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection (2009) PLoS Biol., 7, pp. e18 
504 |a Tohyama, Y., Kiyama, H., Kitajiri, M., Yamashita, T., Kumazawa, T., Tohyama, M., Ontogeny of calcitonin gene-related peptide in the organ of Corti of the rat (1989) Brain Res. Dev. Brain Res., 45, pp. 309-312 
504 |a Tritsch, N.X., Bergles, D.E., Developmental regulation of spontaneous activity in the Mammalian cochlea (2010) J. Neurosci., 30, pp. 1539-1550 
504 |a Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E., Bergles, D.E., The origin of spontaneous activity in the developing auditory system (2007) Nature, 450, pp. 50-55 
504 |a Tritsch, N.X., Rodriguez-Contreras, A., Crins, T.T., Wang, H.C., Borst, J.G., Bergles, D.E., Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset (2010) Nat. Neurosci., 13, pp. 1050-1052 
504 |a Tsunoyama, K., Gojobori, T., Evolution of nicotinic acetylcholine receptor subunits (1998) Mol. Biol. Evol., 15, pp. 518-527 
504 |a Unwin, N., Refined structure of the nicotinic acetylcholine receptor at 4A resolution (2005) J. Mol. Biol., 346, pp. 967-989 
504 |a Urbano, F.J., Depetris, R.S., Uchitel, O.D., Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals (2001) Pflugers Arch., 441, pp. 824-831 
504 |a Verbitsky, M., Rothlin, C., Katz, E., Elgoyhen, A.B., Mixed nicotinic-muscarinic properties of the a9 nicotinic cholinergic receptor (2000) Neuropharmacology, 39, pp. 2515-2524 
504 |a Vetter, D., Lieberman, M., Mann, J., Barhanin, J., Boulter, J., Brown, M., Saffiote-Kollman, J., Elgoyhen, A., Role of a9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation (1999) Neuron, 23, pp. 93-103 
504 |a Vetter, D.E., Katz, E., Maison, S.F., Taranda, J., Turcan, S., Ballestero, J., Liberman, M.C., Boulter, J., The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 20594-20599 
504 |a Wada, K., Ballivet, M., Boulter, J., Connolly, J., Wada, E., Deneris, E.S., Swanson, L.W., Patrick, J., Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor (1988) Science, 240, pp. 330-334 
504 |a Warr, W.B., Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry (1975) J. Comput. Neurol., 161, pp. 159-181 
504 |a Warr, W., Organization of olivocochlear efferent systems in mammals (1992) The Mammalian Auditory Pathway: Neuroanatomy, pp. 410-448. , Springer-Verlag, New York, W. Douglas, A. Popper, R. Fay (Eds.) 
504 |a Weber, T., Gopfert, M.C., Winter, H., Zimmermann, U., Kohler, H., Meier, A., Hendrich, O., Knipper, M., Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 7690-7695 
504 |a Weisstaub, N., Vetter, D., Elgoyhen, A., Katz, E., The alpha9/alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations (2002) Hearing Res., 167, pp. 122-135 
504 |a Wersinger, E., McLean, W.J., Fuchs, P.A., Pyott, S.J., BK channels mediate cholinergic inhibition of high frequency cochlear hair cells (2011) PLoS ONE, 5, pp. e13836 
504 |a Wiederhold, M.L., Kiang, N.Y.S., Effects of electrical stimulation of the crossed olivocochlear bundle on cat single auditory nerve fibres (1970) J. Acoust. Soc. Am., 48, pp. 950-965 
504 |a Winslow, R.L., Sachs, M.B., Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle (1988) Hearing Res., 35, pp. 165-189 
504 |a Yoshida, N., Shigemoto, T., Sugai, T., Ohmori, H., The role of inositol triphosphate on ACh-induced outward currents in bullfrog saccular hair cells (1994) Brain Res., p. 644 
504 |a Yuhas, W.A., Fuchs, P.A., Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells (1999) J. Comput. Physiol. [A], 185, pp. 455-462 
504 |a Zheng, J., Shen, W., He, D.Z., Long, K.B., Madison, L.D., Dallos, P., Prestin is the motor protein of cochlear outer hair cells (2000) Nature, 405, pp. 149-155 
504 |a Zorrilla de San Martin, J., Ballestero, J., Katz, E., Elgoyhen, A.B., Fuchs, P.A., Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells (2007) J. Assoc. Res. Otolaryngol., 8, pp. 474-483 
504 |a Zorrilla de San Martin, J., Pyott, S., Ballestero, J., Katz, E., Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse (2010) J. Neurosci., 30, pp. 12157-12167 
520 3 |a Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca 2+ permeable and is coupled to a Ca 2+-activated SK potassium channel. Thus, hyperpolarization of hair cells follows efferent fiber activation. In this work we review the literature that has enlightened our knowledge concerning the intimacies of this synapse. © 2011 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Howard Hughes Medical Institute 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: National Institutes of Health, R01 DC001508 
536 |a Detalles de la financiación: A.B.E. is supported by the Howard Hughes Medical Institute International Scholar Program, the Tinnitus Research Initiative, the NIH (R01 DC001508), the University of Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas and Agencia Nacional de Promoción Científica y Tecnológica, Argentina. E.K. is funded by the NIH (R01 DC001508), the University of Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas and Agencia Nacional de Promoción Científica y Tecnológica, Argentina. 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina 
593 |a Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Departamento de Fisiología Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
690 1 0 |a Α9 AND Α10 NICOTINIC RECEPTORS 
690 1 0 |a COCHLEA 
690 1 0 |a HAIR CELLS 
690 1 0 |a NICOTINIC RECEPTORS 
690 1 0 |a PRESTIN 
690 1 0 |a SK CHANNELS 
690 1 0 |a SYNAPTIC PLASTICITY 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a ION CHANNEL 
690 1 0 |a NICOTINIC RECEPTOR 
690 1 0 |a NICOTINIC RECEPTOR ALPHA10 
690 1 0 |a NICOTINIC RECEPTOR ALPHA9 
690 1 0 |a PRESTIN 
690 1 0 |a SMALL CONDUCTANCE CALCIUM ACTIVATED POTASSIUM CHANNEL 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ACETYLCHOLINE RELEASE 
690 1 0 |a ARTICLE 
690 1 0 |a AUDITORY STIMULATION 
690 1 0 |a CALCIUM CELL LEVEL 
690 1 0 |a CELL ACTIVATION 
690 1 0 |a CELL FUNCTION 
690 1 0 |a CELL INTERACTION 
690 1 0 |a CELL MOTILITY 
690 1 0 |a COCHLEAR NERVE 
690 1 0 |a EFFERENT NERVE 
690 1 0 |a HAIR CELL 
690 1 0 |a HUMAN 
690 1 0 |a HYPERPOLARIZATION 
690 1 0 |a INTRACELLULAR SIGNALING 
690 1 0 |a MEMBRANE PERMEABILITY 
690 1 0 |a NERVE CELL INHIBITION 
690 1 0 |a NERVE CELL PLASTICITY 
690 1 0 |a NONHUMAN 
690 1 0 |a OLIVARY NUCLEUS 
690 1 0 |a OLIVOCOCHLEAR HAIR CELL 
690 1 0 |a POTASSIUM CURRENT 
690 1 0 |a SIGNAL PROCESSING 
690 1 0 |a SOUND TRANSMISSION 
690 1 0 |a SYNAPSE 
690 1 0 |a SYNAPTIC TRANSMISSION 
690 1 0 |a VIBRATION 
690 1 0 |a ANIMALS 
690 1 0 |a COCHLEA 
690 1 0 |a EFFERENT PATHWAYS 
690 1 0 |a HAIR CELLS, AUDITORY 
690 1 0 |a HUMANS 
690 1 0 |a OLIVARY NUCLEUS 
690 1 0 |a RECEPTORS, NICOTINIC 
690 1 0 |a SYNAPSES 
700 1 |a Katz, E. 
773 0 |d 2012  |g v. 106  |h pp. 47-56  |k n. 1-2  |p J. Physiol. Paris  |x 09284257  |w (AR-BaUEN)CENRE-5754  |t Journal of Physiology Paris 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858190504&doi=10.1016%2fj.jphysparis.2011.06.001&partnerID=40&md5=6dd2f1b718de103db0ccecff35555378  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jphysparis.2011.06.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09284257_v106_n1-2_p47_Elgoyhen  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09284257_v106_n1-2_p47_Elgoyhen  |y Registro en la Biblioteca Digital 
961 |a paper_09284257_v106_n1-2_p47_Elgoyhen  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70925