Water-deficit stress signal transduction pathways in plants: From sensing to response

As sessile organisms plants have to cope with changing environmental conditions. Drought and salinity, which causes water-deficit in plant cells, are common adverse factors that limit plant growth and productivity. Understanding the mechanisms by which plants perceive environmental signals and trans...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Capiati, D.A
Otros Autores: García, M.N.M, Ulloa, R.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2012
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 38412caa a22021017a 4500
001 PAPER-9950
003 AR-BaUEN
005 20230518203956.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84891965144 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Capiati, D.A. 
245 1 0 |a Water-deficit stress signal transduction pathways in plants: From sensing to response 
260 |b Nova Science Publishers, Inc.  |c 2012 
270 1 0 |m Capiati, D.A.; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: dcapiati@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Chinnusamy, V., Schumaker, K., Zhu, J.K., Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants (2004) Journal of Experimental Botany, 55, pp. 225-236 
504 |a Mahajan, S., Tuteja, N., Cold, salinity and drought stresses: an overview (2005) Archives of Biochemistry and Biophysics, 444, pp. 139-158 
504 |a Xu, Z., Zhou, G., Shimizu, H., Plant responses to drought and rewatering (2010) Plant Signaling and Behavior, 5, pp. 649-654 
504 |a Hirayama, T., Shinozaki, K., Research on plant abiotic stress responses in the post-genome era: past, present and future (2010) The Plant Journal, 61, pp. 1041-1052 
504 |a Xiong, L., Schumaker, K.S., Zhu, J.K., Cell signaling during cold, drought, and salt stress (2002) The Plant Cell, 14, pp. S165-183 
504 |a Suzuki, I., Dmitry, A.L., Kanesaki, Y., Mikami, K., Murata, N., The pathway for perception and transduction of low-temperature signals in Synechocystis (2000) The EMBO Journal, 19, pp. 1327-1334 
504 |a Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C., De Mendoza, D., Molecular basis of thermosensing: a two component signal transduction thermometer in Bacillus subtilis (2001) The EMBO Journal, 20, pp. 1681-1691 
504 |a Maeda, T., Wurgler-Murphy, S.M., Saito, H., A two-component system that regulates an osmosensing MAP kinase cascade in yeast (1994) Nature, 369, pp. 242-245 
504 |a Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., Shinozaki, K., A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor (1999) The Plant Cell, 11, pp. 1743-1754 
504 |a Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., Sano, H., Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants (2003) Plant Physiology, 131, pp. 454-462 
504 |a Nakamura, K., Sano, H., A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants (2009) Plant Signaling and Behavior, 4, pp. 26-29 
504 |a Meijer, H.J., Munnik, T., Phospholipid-based signaling in plants (2003) Annual Review of Plant Biology, 54, pp. 265-306 
504 |a Knight, H., Calcium signaling during abiotic stress in plants (2000) International Review of Cytology, 195, pp. 269-325 
504 |a Sanders, D., Brownlee, C., Harper, J.F., Communicating with calcium (1999) The Plant Cell, 11, pp. 691-706 
504 |a Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., Waner, D., Guard cell signal transduction (2001) Annual Review of Plant Physiology and Plant Molecular Biology, 52, pp. 627-658 
504 |a Pical, C., Westergren, T., Dove, S.K., Larsson, C., Sommarin, M., Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells (1999) Journal of Biological Chemistry, 274, pp. 38232-38240 
504 |a DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., Hama, H., Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis (2001) Plant Physiology, 126, pp. 759-769 
504 |a Mikami, K., Katagiri, T., Luchi, S., Yamaguchi-Shinozaki, K., Shinozaki, K., A gene encoding phosphatidylinositol 4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana (1998) The Plant Journal, 15, pp. 563-568 
504 |a Hirayama, T., Ohto, C., Mizoguchi, T., Shinozaki, K., A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana (1995) Proceedings of the National Academy of Sciences of the United States of America, 92, pp. 3903-3907 
504 |a Kopka, J., Pical, C., Gray, J.E., Muller-Rober, B., Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato (1998) Plant Physiology, 116, pp. 239-250 
504 |a Xiong, L., Lee, B.H., Ishitani, M., Lee, H., Zhang, C., Zhu, J.K., FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis (2001) Genes and Development, 15, pp. 1971-1984 
504 |a Perera, I.Y., Hung, C.Y., Moore, C.D., Stevenson-Paulik, J., Boss, W.F., Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling (2008) The Plant Cell, 20, pp. 2876-2893 
504 |a Wang, X., The role of phospholipase D in signaling cascades (1999) Plant Physiology, 120, pp. 645-651 
504 |a Jacob, T., Ritchie, S., Assmann, S.M., Gilroy, S., Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity (1999) Proceedings of the National Academy of Sciences of the United States of America, 9, pp. 12192-12197 
504 |a Frank, W., Munnik, T., Kerkmann, K., Salamini, F., Bartels, D., Water-deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum (2000) The Plant Cell, 12, pp. 111-123 
504 |a Munnik, T., Meijer, H.J.G., Ter Riet, B., Frank, W., Bartels, D., Musgrave, A., Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate (2000) The Plant Journal, 22, pp. 147-154 
504 |a Katagiri, T., Takahashi, S., Shinozaki, K., Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration inducible accumulation of phosphatidic acid in stress signaling (2001) The Plant Journal, 26, pp. 595-605 
504 |a Hong, Y., Zhang, W., Wang, X., Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity (2010) Plant Cell and Environment, 33, pp. 627-635 
504 |a Yu, L., Nie, J., Cao, C., Jin, Y., Yan, M., Wang, F., Liu, J., Zhang, W., Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana (2010) New Phytologist, 188, pp. 762-773 
504 |a Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular responses to high salinity (2000) Annual Review of Plant Physiology and Plant Molecular Biology, 51, pp. 463-499 
504 |a Kocsy, G., Galiba, G., Brunold, C., Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants (2001) Physiologia Plantarum, 113, pp. 158-164 
504 |a Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J., Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 2940-2945 
504 |a Guan, L.M., Zhao, J., Scadalios, J.G., Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response (2000) The Plant Journal, 22, pp. 87-95 
504 |a Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., Schroeder, J.I., Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells (2000) Nature, 406, pp. 731-734 
504 |a Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D.W., Song, C.P., Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba (2001) Plant Physiology, 126, pp. 1438-1448 
504 |a Desikan, R., Mackerness, S.A.H., Hancock, J.T., Neill, S.J., Regulation of the Arabidopsis transcriptome by oxidative stress (2001) Plant Physiology, 127, pp. 159-172 
504 |a Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Schroeder, J.I., NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis (2003) The EMBO Journal, 22, pp. 2623-2633 
504 |a Xiong, L., Zhu, J.K., Molecular and genetic aspects of plant responses to osmotic stress (2002) Plant Cell and Environment, 25, pp. 131-139 
504 |a Yuasa, T., Ichimura, K., Mizoguchi, T., Shinozaki, K., Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase (2001) Plant and Cell Physiology, 42, pp. 1012-1016 
504 |a Harmon, A.C., Calcium-regulated protein kinases of plants (2003) Gravitational and Space Biology Bulletin, 16, pp. 83-90 
504 |a Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., Shinozaki, K., Two genes that encode Ca2_-dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana (1994) Molecular and General Genetics, 224, pp. 331-340 
504 |a Pei, Z.M., Ward, J.M., Harper, J.F., Schroeder, J.I., A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK (1996) The EMBO Journal, 15, pp. 6564-6574 
504 |a Sheen, J., Ca2+-dependent protein kinases and stress signal transduction in plants (1996) Science, 274, pp. 1900-1902 
504 |a Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K., Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants (2000) The Plant Journal, 23, pp. 319-327 
504 |a Patharkar, O.R., Cushman, J.C., A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallium phosphorylates a two-component pseudo-response regulator (2000) The Plant Journal, 24, pp. 679-691 
504 |a Capiati, D.A., País, S.M., Téllez-Iñón, M.T., Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling (2006) Journal of Experimental Botany, 57, pp. 2391-2400 
504 |a Reddy, A.S.N., Ali, G.S., Celesnik, H., Day, I.S., Coping with Stresses: Roles of Calcium-and Calcium/Calmodulin-Regulated Gene Expression (2011) The Plant Cell, 23, pp. 2010-2032 
504 |a Chehab, E.W., Patharker, O.R., Hegeman, A.D., Taybi, T., Cushman, J.C., Autophosphorylation and subcellular localization dynamics of a salt-and water deficit induced calcium-dependent protein kinase from ice plant (2004) Plant Physiology, 135, pp. 1430-1446 
504 |a Li, Z., Komatsu, S., Molecular cloning and characterization of calreticulin, a calcium-binding protein involved in the regeneration of rice cultured suspension cells (2000) European Journal of Biochemistry, 267, pp. 737-745 
504 |a Yoon, G.M., Cho, H.S., Ha, H.J., Liu, J.R., Lee, H.S., Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein (1999) Plant Molecular Biology, 39, pp. 1991-1001 
504 |a Zhu, S.Y., Yu, X.C., Wang, X.J., Zhao, R., Li, Y., Fan, R.C., Shang, Y., Zhang, D.P., Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis (2007) The Plant Cell, 19, pp. 3019-3036 
504 |a Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Kim, S.Y., Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity (2005) Plant Physiology, 139, pp. 1750-1761 
504 |a Mori, I.C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y.F., Andreoli, S., Tiriac, H., Schroeder, J.I., CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2 -permeable channels and stomatal closure (2006) PLoS Biology, 4, pp. e327 
504 |a Zou, J.J., Wei, F.J., Wang, C., Wu, J.J., Ratnasekera, D., Liu, W.X., Wu, W.H., Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress (2010) Plant Physiology, 154, pp. 1232-1243 
504 |a Zhao, R., Sun, H.L., Mei, C., Wang, X.J., Yan, L., Liu, R., Zhang, X.F., Zhang, D.P., The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth (2011) New Phytologist, 192, pp. 61-73 
504 |a Choi, H., Hong, J., Ha, J., Kang, J., Kim, S.Y., ABFs, a family of ABA-responsive element binding factors (2000) Journal of Biological Chemistry, 275, pp. 1723-1730 
504 |a Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 11632-11637 
504 |a Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Kim, S.Y., Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity (2005) Plant Physiology, 139, pp. 1750-1761 
504 |a Zhu, J.K., Salt and drought stress signal transduction in plants (2002) Annual Review of Plant Biology, 53, pp. 247-273 
504 |a Ishitani, M., Liu, J., Halfter, U., Kim, C.S., Shi, W., Zhu, J.K., SOS3 function in plant salt tolerance requires N-myristoylation and calcium-binding (2000) The Plant Cell, 12, pp. 1667-1677 
504 |a Liu, J., Ishitani, M., Halfter, U., Kim, C.S., Zhu, J.K., The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 3730-3734 
504 |a Shi, H., Ishitani, M., Kim, C.S., Zhu, J.K., The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 6896-6901 
504 |a Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., Zhu, J.K., Regulation of SOS1, a plasma membrane Na/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 8436-8441 
504 |a Quintero, F.J., Ohta, M., Shi, H., Zhu, J.K., Pardo, J.M., Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 9061-9066 
504 |a Batelli, G., Verslues, P.E., Agius, F., Qiu, Q., Fujii, H., Pan, S., Schumaker, K.S., Zhu, J.K., SOS2 promotes salt tolerance in part by interacting with the vaculoar H?-ATPase and upregulating its transport activity (2007) Molecular and Cellular Biology, 27, pp. 7781-7790 
504 |a Zhu, J.K., Cell signaling under salt, water and cold stresses (2001) Plant Biology, 4, pp. 401-406 
504 |a Guo, Y., Halfter, U., Ishitani, M., Zhu, J.K., Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance (2001) The Plant Cell, 13, pp. 1383-1400 
504 |a Sanchez-Barrena, M.J., Fujii, H., Angulo, I., Martinez-Ripoll, M., Zhu, J.K., Albert, A., The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3 (2007) Molecular Cell, 26, pp. 427-435 
504 |a Ohta, M., Guo, Y., Halfter, U., Zhu, J.K., A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C AB12 (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 11771-11776 
504 |a Qiu, Q.S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., Zhu, J.K., Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the SOS pathway (2004) Journal of Biological Chemistry, 279, pp. 207-215 
504 |a D'Angelo, C., Weinl, S., Batistic, O., Pandey, G.K., Cheong, Y.H., Schültke, S., Albrecht, V., Kudla, J., Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis (2006) The Plant Journal, 48, pp. 857-872 
504 |a Mikolajczyk, M., Olubunmi, S.A., Muszynska, G., Klessig, D.F., Dobrowolska, G., Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells (2000) The Plant Cell, 12, pp. 165-178 
504 |a Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A., Hirt, H., Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress (1999) The Plant Journal, 20, pp. 381-388 
504 |a Laloi, C., Apel, K., Danon, A., Reactive oxygen signalling: the latest news (2004) Current Opinion in Plant Biology, 7, pp. 323-328 
504 |a Farkas, I., Dombrádi, V., Miskei, M., Szabados, L., Koncz, C., Arabidopsis PPP family of serine/threonine phosphatases (2007) Trends in Plant Science, 12, pp. 169-176 
504 |a País, S.M., Téllez-Iñón, M.T., Capiati, D.A., Serine/threonine protein phosphatases type 2A and their roles in stress signaling (2009) Plant Signaling and Behavior, 4, pp. 1013-1015 
504 |a Yu, R.M., Zhou, Y., Xu, Z.F., Chye, M.L., Kong, R.Y., Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice (2003) Plant Molecular Biology, 51, pp. 295-311 
504 |a Yu, R.M., Wong, M.M., Jack, R.W., Kong, R.Y., Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.) (2005) Planta, 222, pp. 757-768 
504 |a País, S.M., González, M.A., Téllez-Iñón, M.T., Capiati, D.A., Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses (2009) Planta, 230, pp. 13-25 
504 |a Xu, C., Jing, R., Mao, X., Jia, X., Chang, X., A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco (2007) Annals of Botany, 99, pp. 439-450 
504 |a Tóth, E.C., Vissi, E., Kovács, I., Szöke, A., Ariño, J., Gergely, P., Dudits, D., Dombrádi, V., Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa (2000) Plant Molecular Biology, 43, pp. 527-536 
504 |a Blakeslee, J.J., Zhou, H.W., Heath, J.T., Skottke, K.R., Barrios, J.A., Liu, S.Y., DeLong, A., Specificity of RCN1-mediated protein phosphatase 2A regulation in meristem organization and stress response in roots (2008) Plant Physiology, 146, pp. 539-553 
504 |a Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A., Giraudat, J., The AB11 and AB12 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway (2001) The Plant Journal, 25, pp. 295-303 
504 |a Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A., Vartanian, N., Giraudat, J., AB11 protein phosphatase 2C is a negative regulator of abscisic acid signaling (1999) The Plant Cell, 11, pp. 1897-1909 
504 |a Allen, G.J., Kuchitsu, K., Chu, S.P., Murata, Y., Schroeder, J.I., Arabidopsis abi 1-1 and ab12-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells (1999) The Plant Cell, 11, pp. 1785-1798 
504 |a Murata, Y., Pei, Z.M., Mori, I.C., Schroeder, J., Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in ab11-1 and ab12-1 protein phosphatase 2C mutants (2001) The Plant Cell, 13, pp. 2513-2523 
504 |a Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O., Rodriguez, P.L., Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling (2004) The Plant Journal, 37, pp. 354-369 
504 |a Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H., Schroeder, J.I., The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA (2006) Plant Physiology, 140, pp. 127-139 
504 |a Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., Hirayama, T., ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs (2006) Plant Physiology, 140, pp. 115-126 
504 |a Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K., Hirayama, T., ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed (2007) The Plant Journal, 50, pp. 935-949 
504 |a Koornneef M.; L'eon-Kloosterziel, K.M., Schwartz, S.H., Zeevaart, J.A.D., The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis (1998) Plant Physiology and Biochemistry, 36, pp. 83-89 
504 |a Liotenberg, S., North, H., Marion-Poll, A., Molecular biology and regulation of abscisic acid biosynthesis in plants (1999) Plant Physiology and Biochemistry, 37, pp. 341-350 
504 |a Xiong, L., Ishitani, M., Lee, H., Zhu, J.K., The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression (2001) The Plant Cell, 13, pp. 206-383 
504 |a Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., Abrams, S.R., Abscisic acid: Emergence of a core signaling network (2010) Annual Review of Plant Biology, 61, pp. 651-679 
504 |a Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., Schroeder, J.I., Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling (2010) Annual Review of Plant Biology, 61, pp. 561-591 
504 |a Hubbard, K.E., Nishimura, N., Hitomi, K., Getzoff, E.D., Schroeder, J.I., Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions (2010) Genes & Development, 24, pp. 1695-1708 
504 |a Seki, M., Umezawa, T., Urano, K., Shinozaki, K., Regulatory metabolic networks in drought stress responses (2007) Current Opinion in Plant Biology, 10, pp. 296-302 
504 |a Zeevaart, J.A.D., Creelman, R.A., Metabolism and physiology of abscisic acid (1988) Annual Review of Plant Physiology and Plant Molecular Biology, 39, pp. 439-473 
504 |a Pierce, M., Raschke, K., The relationship between abscisic acid accumulation and turgor (1978) Plant Physiology, 61 (SUPPL.), p. 25 
504 |a Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana (1996) The EMBO Journal, 15, pp. 2331-1242 
504 |a Tan, B.C., Schwartz, S.H., Zeevaart, J.A.D., Mc-Carty, D.R., Genetic control of abscisic acid biosynthesis in maize (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 12235-12340 
504 |a Nambara, E., Marion-Poll, A., Abscisic acid biosynthesis and catabolism (2005) Annual Review of Plant Biology, 56, pp. 165-185 
504 |a Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis (2001) The Plant Journal, 27, pp. 325-333 
504 |a Qin, X., Zeevaart, J.A.D., The 9-cisepoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 15354-15361 
504 |a Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A., Taylor, I.B., Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid (2000) The Plant Journal, 23, pp. 363-374 
504 |a Liotenberg, S., North, H., Marion-Poll, A., Molecular biology and regulation of abscisic acid biosynthesis in plants (1999) Plant Physiology and Biochemistry, 37, pp. 341-350 
504 |a Seo, M., Peeters, A.J.M., Koiwai, H., Oritani, T., Marion-Poll, A., The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 12908-12913 
504 |a Hirayama, T., Shinozaki, K., Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA (2007) Trends in Plant Science, 12, pp. 343-351 
504 |a Hirayama, T., Shinozaki, K., Research on plant abiotic stress responses in the post-genome era: past, present and future (2010) The Plant Journal, 61, pp. 1041-1052 
504 |a Yamaguchi-Shinozaki, K., Shinozaki, K., Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters (2005) Trends in Plant Science, 10, pp. 88-94 
504 |a Shi, H., Quintero, F.J., Pardo, J.M., Zhu, J.K., The putative plasma membrane Na/H+ antiporter SOS1 controls long distance Na+ transport in plants (2002) The Plant Cell, 14, pp. 465-477 
504 |a Apse, M.P., Aharon, G.S., Snedden, W.A., Blumwald, E., Salt tolerance conferred by overexpression of a vacuolar NaCl/HCl-antiport in Arabidopsis (1999) Science, 285, pp. 1256-1258 
504 |a Zhu, J.K., Plant salt tolerance (2001) Trends in Plant Science, 6, pp. 66-71 
504 |a Shinozaki, K., Yamaguchi-Shinozaki, K., Gene expression and signal transduction in water-stress response (1997) Plant Physiology, 115, pp. 327-334 
504 |a Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 11632-11637 
504 |a Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 1988-1993 
504 |a Fujii, H., Zhu, J., Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction and stress (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 8380-8385 
504 |a Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., Shinozaki, K., SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 17306-17311 
504 |a Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., Hattori, T., Differential activation of the rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid (2004) The Plant Cell, 16, pp. 1163-1177 
504 |a Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Abscisic acid activated SnRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors (2005) The Plant Journal, 44, pp. 939-949 
504 |a Johnson, R.R., Wagner, R.L., Verhey, S.D., Walker-Simmons, M.K., The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences (2002) Plant Physiology, 130, pp. 837-846 
504 |a Abe, H., Urao, T., Ito, T., Sekic, M., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling (2003) The Plant Cell, 15, pp. 63-78 
504 |a Jiang, C., Iu, B., Singh, J., Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus (1996) Plant Molecular Biology, 30, pp. 679-684 
504 |a Baker, S.S., Wilhelm, K.S., Thomashow, M.F., The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression (1994) Plant Molecular Biology, 24, pp. 701-713 
504 |a Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis (1998) Plant Cell, 10, pp. 1391-1406 
504 |a Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression (1998) Biochemical and Biophysical Research Communications, 250, pp. 161-170 
504 |a Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F., Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-inducedCORgene expression (1998) The Plant Journal, 16, pp. 433-442 
504 |a Haake, V., Cook, D., Riechmann, J.L., Pined, A.O., Thomashow, M.F., Zhang, J.Z., Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis (2002) Plant Physiology, 130, pp. 639-648 
504 |a Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Yamaguchi-Shinozaki, K., Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses (2003) The Plant Journal, 34, pp. 137-148 
504 |a Bhatnagar-Mathur, P., Vadez, V., Sharma, K.K., Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects (2008) Plant Cell Reports, 27, pp. 411-424 
504 |a Century, K., Reuber, T.L., Ratcliffe, O.J., Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products (2008) Plant Physiology, 147, pp. 20-29 
504 |a Nakashima, K., Shinwari, Z.K., Sakuma, Y., Seki, M., Miura, S., Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression (2000) Plant Molecular Biology, 42, pp. 657-665 
504 |a Stockinger, E.J., Gilmour, S.J., Thomashow, M.F., Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 1035-1040 
504 |a Guiltinan, M.J., Marcotte, W.R., Quatrano, R.S., A plant leucine zipper protein that recognizes an abscisic acid response element (1990) Science, 250, pp. 267-271 
504 |a Hobo, T., Kowyama, Y., Hattori, T., A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 15348-15353 
504 |a Nakagawa, H., Ohmiya, K., Hattori, T., A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid (1996) The Plant Journal, 9, pp. 217-227 
504 |a Nantel, A., Quatrano, R.S., Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity (1996) The Journal of Biological. Chemistry, 271, pp. 31296-312305 
504 |a Oeda, K., Salinas, J., Chua, N.H., A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes (1991) The EMBO Journal, 10, pp. 1793-17802 
504 |a Finkelstein, R.R., Lynch, T.J., The Arabidopsis abscisic acid response gene AB15 encodes a basic leucine zipper transcriptional factor (2000) The Plant Cell, 12, pp. 599-609 
504 |a Bastola, D.R., Pethe, V.V., Winicov, I., Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene (1998) Plant Molecular Biology, 38, pp. 1123-1135 
504 |a Yáñez, M., Cáceres, S., Orellana, S., Bastías, A., Verdugo, I., Ruiz-Lara, S., Casaretto, J.A., An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes (2009) Plant Cell Reports, 28, pp. 1497-1507 
504 |a Hsieh, T.H., Li, C.W., Su, R.C., Cheng, C.P., Sanjaya Tsai, Y.C., Chan, M.T., A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response (2010) Planta, 231, pp. 1459-1473 
504 |a Chaves, M.M., Maroco, J.P., Pereira, J.S., Understanding plant responses to drought-from genes to the whole plant (2003) Functional Plant Biology, 30, pp. 239-264 
504 |a Tabaeizadeh, Z., Drought-induced responses in plant cells (1998) International Review of Cytology, 182, pp. 193-247 
504 |a Rontein, D., Basset, G., Hanson, A.D., Metabolic engineering of osmoprotectant accumulation in plants (2002) Metabolic Engineering, 4, pp. 49-56 
504 |a Crowe, J.H., Carpenter, J.F., Crowe, L.M., The role of vitrification in anhydrobiosis (1998) Annual Review of Physiology, 60, pp. 73-103 
504 |a Hincha, D.K., Zuther, E., Hellwege, E.M., Heyer, A.G., Specific effects of fructo-and gluco-oligosaccharides in the preservation of liposomes during drying (2002) Glycobiology, 12, pp. 103-110 
504 |a Villadsen, D., Rung, J.H., Nielsen, T.H., Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphosphate metabolism in barley leaves (2005) Functional Plant Biology, 32, pp. 1033-1043 
504 |a Tunnacliffe, A., Wise, M.J., The continuing conundrum of the LEA proteins (2007) Naturwissenschaften, 94, pp. 791-812 
504 |a Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A., Covarrubias, A.A., Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit (2000) Journal of Biological Chemistry, 275, pp. 5668-5674 
504 |a Goyal, K., Walton, L.J., Tunnacliffe, A., LEA proteins prevent protein aggregation due to water stress (2005) Biochemical Journal, 388, pp. 151-157 
520 3 |a As sessile organisms plants have to cope with changing environmental conditions. Drought and salinity, which causes water-deficit in plant cells, are common adverse factors that limit plant growth and productivity. Understanding the mechanisms by which plants perceive environmental signals and transmit them to cellular machinery to activate adaptive responses is of great importance to biology and to rational engineering of crop plants. This chapter reviews the signal transduction mechanisms that activate water-deficit stress responses and the regulation of transcription factors that control the expression of stress-responsive genes. The general components of stress signal transduction pathway for drought and salt stress are considered. Signal perception, receptor-coupled phosphorelay, phosphoinositol-induced Ca2+ changes, Ca2+-coupled phosphoprotein cascades, mitogen-activated protein kinase cascade and transcriptional activation of stress responsive genes are the main signal transduction steps addressed. Abscisic acid (ABA) plays a pivotal role in stress responses in plants. Therefore, the hormone implications are also reviewed. The transcription factors responsible for reprogramming gene expression in response to stress are described. Finally, the physiological and biochemical responses that lead to plant tolerance to water-deficit stress are addressed. © 2012 by Nova Science Publishers, Inc. All rights reserved.  |l eng 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
700 1 |a García, M.N.M. 
700 1 |a Ulloa, R.M. 
773 0 |d Nova Science Publishers, Inc., 2012  |h pp. 99-132  |p Abiotic Stress: New Res.  |z 9781619421974  |t Abiotic Stress: New Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891965144&partnerID=40&md5=a4f7e0538b8247b2d5c421659dd8fa8a  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97816194_v_n_p99_Capiati  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816194_v_n_p99_Capiati  |y Registro en la Biblioteca Digital 
961 |a paper_97816194_v_n_p99_Capiati  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 70903