Dexamethasone counteracts the immunostimulatory effects of triiodothyronine (T3) on dendritic cells

Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive agents. Several studies have indicated the important role of dendritic cells (DCs), highly specialized antigen-presenting and immunomodulatory cells, in GC-mediated suppression of adaptive immune responses. Recently, we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Montesinos, M.M
Otros Autores: Alamino, V.A, Mascanfroni, I.D, Susperreguy, S., Gigena, N., Masini-Repiso, A.M, Rabinovich, G.A, Pellizas, C.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 22546caa a22017777a 4500
001 PAPER-9945
003 AR-BaUEN
005 20230518203956.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-83655167058 
024 7 |2 cas  |a dexamethasone, 50-02-2; interleukin 12, 138415-13-1; liothyronine, 6138-47-2, 6893-02-3; protein kinase B, 148640-14-6; Adjuvants, Immunologic; Biological Markers; Dexamethasone, 50-02-2; Glucocorticoids; Interferon-gamma, 82115-62-6; Interleukin-10, 130068-27-8; Interleukin-12, 187348-17-0; NF-kappa B; Proto-Oncogene Proteins c-akt, 2.7.11.1; Receptors, Glucocorticoid; Receptors, Thyroid Hormone; Triiodothyronine, 6893-02-3 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a STEDA 
100 1 |a Montesinos, M.M. 
245 1 0 |a Dexamethasone counteracts the immunostimulatory effects of triiodothyronine (T3) on dendritic cells 
260 |c 2012 
270 1 0 |m Pellizas, C.G.; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina; email: claudia@mail.fcq.unc.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Zhou, J., Cidlowski, J.A., The human glucocorticoid receptor: One gene, multiple proteins and diverse responses (2005) Steroids, 70 (SPEC. ISS. 5-7), pp. 407-417. , DOI 10.1016/j.steroids.2005.02.006 
504 |a Buttgereit, F., Straub, R.H., Wehling, M., Burmester, G.-R., Glucocorticoids in the treatment of rheumatic diseases: An update on the mechanisms of action (2004) Arthritis and Rheumatism, 50 (11), pp. 3408-3417. , DOI 10.1002/art.20583 
504 |a Franchimont, D., Overview of the actions of glucocorticoids on the immune response: A good model to characterize new pathways of immunosuppression for new treatment strategies (2004) Annals of the New York Academy of Sciences, 1024, pp. 124-137. , DOI 10.1196/annals.1321.009 
504 |a Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J.M., Role of molecular chaperones in steroid receptor action (2004) Essays in Biochemistry, 40, pp. 41-58 
504 |a Ashwell, J.D., Lu, F.W.M., Vacchio, M.S., Glucocorticoids in T cell development and function (2000) Annual Review of Immunology, 18, pp. 309-345. , DOI 10.1146/annurev.immunol.18.1.309 
504 |a Barnes, P.J., Adcock, I., Anti-inflammatory actions of steroids: Molecular mechanisms (1993) Trends in Pharmacological Sciences, 14 (12), pp. 436-441. , DOI 10.1016/0165-6147(93)90184-L 
504 |a Cohen, J.J., Duke, R.C., Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death (1984) Journal of Immunology, 132 (1), pp. 38-42 
504 |a Almawi, W.Y., Beyhum, H.N., Rahme, A.A., Rieder, M.J., Regulation of cytokine and cytokine receptor expression by glucocorticoids (1996) Journal of Leukocyte Biology, 60 (5), pp. 563-572 
504 |a Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., Amigorena, S., Antigen presentation and T cell stimulation by dendritic cells (2002) Annual Review of Immunology, 20, pp. 621-667. , DOI 10.1146/annurev.immunol.20.100301.064828 
504 |a Steinman, R.M., Banchereau, J., Taking dendritic cells into medicine (2007) Nature, 449 (7161), pp. 419-426. , DOI 10.1038/nature06175, PII NATURE06175 
504 |a Torres-Aguilar, H., Blank, M., Jara, L.J., Shoenfeld, Y., Tolerogenic dendritic cells in autoimmune diseases: Crucial players in induction and prevention of autoimmunity (2010) Autoimmun Rev, 10, pp. 8-17 
504 |a Bottero, V., Withoff, S., Verma, I.M., NF-kappaB and the regulation of hematopoiesis (2006) Cell Death Differ, 13, pp. 785-797 
504 |a Zhang, T.Y., Daynes, R.A., Glucocorticoid conditioning of myeloid progenitors enhances TLR4 signaling via negative regulation of the phosphatidylinositol 3-kinase-Akt pathway (2007) Journal of Immunology, 178 (4), pp. 2517-2526 
504 |a Baschant, U., Tuckermann, J., The role of the glucocorticoid receptor in inflammation and immunity (2010) J Steroid Biochem Mol Biol, 120, pp. 69-75 
504 |a Cheng, S.Y., Leonard, J.L., Davis, P.J., Molecular aspects of thyroid hormone actions (2010) Endocr Rev, 31, pp. 139-170 
504 |a Liu, L., Dean, C.E., Porter, T.E., Thyroid hormones interact with glucocorticoids to affect somatotroph abundance in chicken embryonic pituitary cells in vitro (2003) Endocrinology, 144 (9), pp. 3836-3841. , DOI 10.1210/en.2003-0160 
504 |a Menjo, M., Murata, Y., Fujii, T., Nimura, Y., Seo, H., Effects of thyroid and glucocorticoid hormones on the level of messenger ribonucleic acid for iodothyronine type I 5'-deiodinase in rat primary hepatocyte cultures grown as spheroids (1993) Endocrinology, 133 (6), pp. 2984-2990. , DOI 10.1210/en.133.6.2984 
504 |a Molero, C., Benito, M., Lorenzo, M., Regulation of malic enzyme gene expression by nutrients, hormones, and growth factors in fetal hepatocyte primary cultures (1993) Journal of Cellular Physiology, 155 (1), pp. 197-203 
504 |a Yamaguchi, S., Murata, Y., Nagaya, T., Hayashi, Y., Ohmori, S., Nimura, Y., Seo, H., Glucocorticoids increase retinoid-X receptor alpha (RXR) expression and enhance thyroid hormone action in primary cultured rat hepatocytes (1999) Journal of Molecular Endocrinology, 22 (1), pp. 81-90. , DOI 10.1677/jme.0.0220081 
504 |a Iwamuro, S., Tata, J.R., Contrasting patterns of expression of thyroid hormone and retinoid X receptor genes during hormonal manipulation of Xenopus tadpole tail regression in culture (1995) Mol Cell Endocrinol, 113, pp. 235-243 
504 |a Montesinos, M.M., Pellizas, C.G., Velez, M.L., Susperreguy, S., Masini-Repiso, A.M., Coleoni, A.H., Thyroid hormone receptor beta1 gene expression is increased by Dexamethasone at transcriptional level in rat liver (2006) Life Sci, 78, pp. 2584-2594 
504 |a Mascanfroni, I., Montesinos, M.D.M., Susperreguy, S., Cervi, L., Ilarregui, J.M., Ramseyer, V.D., Masini-Repiso, A.M., Pellizas, C.G., Control of dendritic cell maturation and function by triiodothyronine (2008) FASEB Journal, 22 (4), pp. 1032-1042. , http://www.fasebj.org/cgi/reprint/22/4/1032, DOI 10.1096/fj.07-8652com 
504 |a Mascanfroni, I.D., Montesinos, M.M., Alamino, V.A., Susperreguy, S., Nicola, J.P., Ilarregui, J.M., Nuclear Factor (NF)-{kappa}B-dependent thyroid hormone receptor {beta}1 expression controls dendritic cell function via Akt signaling (2010) J Biol Chem, 285, pp. 9569-9582 
504 |a Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor (1992) J Exp Med, 176, pp. 1693-1702 
504 |a Straw, A.D., MacDonald, A.S., Denkers, E.Y., Pearce, E.J., CD154 plays a central role in regulating dendritic cell activation during infections that induce TH1 or TH2 responses (2003) Journal of Immunology, 170 (2), pp. 727-734 
504 |a Van Genderen, H., Kenis, H., Lux, P., Ungeth, L., Maassen, C., Deckers, N., In vitro measurement of cell death with the annexin A5 affinity assay (2006) Nat Protoc, 1, pp. 363-367 
504 |a Schreiber, E., Matthias, P., Muller, M.M., Schaffner, W., Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells (1989) Nucleic Acids Research, 17 (15), p. 6419 
504 |a Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Van Duivenvoorde, L.M., Han, W.G.H., Bakker, A.M., Louis-Plence, P., Charbonnier, L.M., Apparailly, F., Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms (2007) J Immunol, 179, pp. 1506-1515 
504 |a Abe, M., Thomson, A.W., Influence of immunosuppressive drugs on dendritic cells (2003) Transplant Immunology, 11 (3-4), pp. 357-365. , DOI 10.1016/S0966-3274(03)00050-9 
504 |a Dhodapkar, M.V., Dhodapkar, K.M., Palucka, A.K., Interactions of tumor cells with dendritic cells: Balancing immunity and tolerance (2008) Cell Death and Differentiation, 15 (1), pp. 39-50. , DOI 10.1038/sj.cdd.4402247, PII 4402247, Special issue on Tumor stress, cell death and the ensuing immune response 
504 |a Rhen, T., Cidlowski, J.A., Antiinflammatory action of glucocorticoids - New mechanisms for old drugs (2005) N Engl J Med, 353, pp. 1711-1723 
504 |a Piemonti, L., Monti, P., Allavena, P., Sironi, M., Soldini, L., Leone, B.E., Socci, C., Di Carlo, V., Glucocorticoids affect human dendritic cell differentiation and maturation (1999) Journal of Immunology, 162 (11), pp. 6473-6481 
504 |a Butts, C.L., Shukair, S.A., Duncan, K.M., Harris, C.W., Belyavskaya, E., Sternberg, E.M., Effects of dexamethasone on rat dendritic cell function (2007) Hormone and Metabolic Research, 39 (6), pp. 404-412. , DOI 10.1055/s-2007-980195 
504 |a Stahn, C., Lowenberg, M., Hommes, D.W., Buttgereit, F., Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists (2007) Molecular and Cellular Endocrinology, 275 (1-2), pp. 71-78. , DOI 10.1016/j.mce.2007.05.019, PII S0303720707002110 
504 |a Schmid, D., Burmester, G.R., Tripmacher, R., Kuhnke, A., Buttgereit, F., Bioenergetics of human peripheral blood mononuclear cell metabolism in quiescent, activated, and glucocorticoid-treated states (2000) Biosci Rep, 20, pp. 289-302 
504 |a Hackstein, H., Thomson, A.W., Dendritic cells: Emerging pharmacological targets of immunosuppressive drugs (2004) Nature Reviews Immunology, 4 (1), pp. 24-34 
504 |a Elftman, M.D., Norbury, C.C., Bonneau, R.H., Truckenmiller, M.E., Corticosterone impairs dendritic cell maturation and function (2007) Immunology, 122 (2), pp. 279-290. , DOI 10.1111/j.1365-2567.2007.02637.x 
504 |a Rozkova, D., Horvath, R., Bartunkova, J., Spisek, R., Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors (2006) Clinical Immunology, 120 (3), pp. 260-271. , DOI 10.1016/j.clim.2006.04.567, PII S1521661606006929 
504 |a Muller, G., Muller, A., Tuting, T., Steinbrink, K., Saloga, J., Szalma, C., Knop, J., Enk, A.H., Interleukin-10-treated dendritic cells modulate immune responses of naive and sensitized T cells In vivo (2002) Journal of Investigative Dermatology, 119 (4), pp. 836-841. , DOI 10.1046/j.1523-1747.2002.00496.x 
504 |a Steinbrink, K., Graulich, E., Kubsch, S., Knop, J., Enk, A.H., CD4 + and CD8 + anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity (2002) Blood, 99 (7), pp. 2468-2476. , DOI 10.1182/blood.V99.7.2468 
504 |a Woltman, A.M., De Fijter, J.W., Kamerling, S.W.A., Paul, L.C., Daha, M.R., Van Kooten, C., The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells (2000) European Journal of Immunology, 30 (7), pp. 1807-1812. , DOI 10.1002/1521-4141(200007)30:7<1807::AID-IMMU1807>3.0.CO;2-N 
504 |a Rea, D., Van Kooten, C., Van Meijgaarden, K.E., Ottenhoff, T.H.M., Melief, C.J.M., Offringa, R., Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10 (2000) Blood, 95 (10), pp. 3162-3167 
504 |a Xia, C.-Q., Peng, R., Beato, F., Clare-Salzler, M.J., Dexamethasone induces IL-10-producing monocyte-derived dendritic cells with durable immaturity (2005) Scandinavian Journal of Immunology, 62 (1), pp. 45-54. , DOI 10.1111/j.1365-3083.2005.01640.x 
504 |a Woltman, A.M., Van Der Kooij, S.W., De Fijter, J.W., Van Kooten, C., Maturation-resistant dendritic cells induce hyporesponsiveness in alloreactive CD45RA + and CD45RO + T-cell populations (2006) American Journal of Transplantation, 6 (11), pp. 2580-2591. , DOI 10.1111/j.1600-6143.2006.01520.x 
504 |a Roelen, D.L., Van Den Boogaardt, D.E., Van Miert, P.P., Koekkoek, K., Offringa, R., Claas, F.H., Differentially modulated dendritic cells induce regulatory T cells with different characteristics (2008) Transpl Immunol, 19, pp. 220-228 
504 |a Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10, pp. 981-991 
504 |a Buttgereit, F., Scheffold, A., Rapid glucocorticoid effects on immune cells (2002) Steroids, 67 (6), pp. 529-534. , DOI 10.1016/S0039-128X(01)00171-4, PII S0039128X01001714 
504 |a Spies, C.M., Gaber, T., Hahne, M., Naumann, L., Tripmacher, R., Schellmann, S., Rimexolone inhibits proliferation, cytokine expression and signal transduction of human CD4+ T-cells (2010) Immunol Lett, 131, pp. 24-32 
504 |a Chrysis, D., Zaman, F., Chagin, A.S., Takigawa, M., Savendahl, L., Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3-kinase signaling pathway (2005) Endocrinology, 146 (3), pp. 1391-1397. , DOI 10.1210/en.2004-1152 
504 |a Hodin, R.A., Lazar, M.A., Chin, W.W., Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone (1990) Journal of Clinical Investigation, 85 (1), pp. 101-105 
504 |a Oakley, R.H., Cidlowski, J.A., Cellular processing of the glucocorticoid receptor gene and protein: New mechanisms for generating tissue-specific actions of glucocorticoids (2011) J Biol Chem, 286, pp. 3177-3184 
504 |a Hidalgo, A.A., Trump, D.L., Johnson, C.S., Glucocorticoid regulation of the vitamin D receptor (2010) J Steroid Biochem Mol Biol, 121, pp. 372-375 
504 |a Sun, X., Zemel, M.B., 1Alpha, 25-dihydroxyvitamin D and corticosteroid regulate adipocyte nuclear vitamin D receptor (2008) Int J Obes (Lond), 32, pp. 1305-1311 
504 |a Freeman, L., Hewison, M., Hughes, S.V., Evans, K.M., Hardie, D., Means, T.K., Chakraverty, R., Expression of 11-hydroxysteroid dehydrogenase type 1 permits regulation of glucocorticoid bioavailability by human dendritic cells (2005) Blood, 106 (6), pp. 2042-2049. , DOI 10.1182/blood-2005-01-0186 
504 |a De Bosscher, K., Van Craenenbroeck, K., Meijer, O.C., Haegeman, G., Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems (2008) Eur J Pharmacol, 583, pp. 290-302 
504 |a Laderach, D., Compagno, D., Danos, O., Vainchenker, W., Galy, A., RNA interference shows critical requirement for NF-B p50 in the production of IL-12 by human dendritic cells (2003) Journal of Immunology, 171 (4), pp. 1750-1757 
504 |a Ray, A., Prefontaine, K.E., Physical association and functional antagonism between the p65 subunit of transcription factor NF-B and the glucocorticoid receptor (1994) Proceedings of the National Academy of Sciences of the United States of America, 91 (2), pp. 752-756 
504 |a Scheinman, R.I., Cogswell, P.C., Lofquist, A.K., Baldwin, Jr.A.S., Role of transcriptional activation of Ikappa B alpha in mediation of immunosuppression by glucocorticoids (1995) Science, 270, pp. 283-286 
504 |a De Bosscher, K., Schmitz, M.L., Vanden Berghe, W., Plaisance, S., Fiers, W., Haegeman, G., Glucocorticoid-mediated repression of nuclear factor-B-dependent transcription involves direct interference with transactivation (1997) Proceedings of the National Academy of Sciences of the United States of America, 94 (25), pp. 13504-13509. , DOI 10.1073/pnas.94.25.13504 
504 |a Almawi, W.Y., Melemedjian, O.K., Negative regulation of nuclear factor-B activation and function by glucocorticoids (2002) Journal of Molecular Endocrinology, 28 (2), pp. 69-78. , DOI 10.1677/jme.0.0280069 
504 |a Supakar, P.C., Jung, M.H., Song, C.S., Chatterjee, B., Roy, A.K., Nuclear factor kappaB functions as a negative regulator for the rat androgen receptor gene and NF-kappa B activity increases during the age-dependent desensitization of the liver (1995) J Biol Chem, 270, pp. 837-842 
520 3 |a Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive agents. Several studies have indicated the important role of dendritic cells (DCs), highly specialized antigen-presenting and immunomodulatory cells, in GC-mediated suppression of adaptive immune responses. Recently, we demonstrated that triiodothyronine (T3) has potent immunostimulatory effects on bone marrow-derived mouse DCs through a mechanism involving T3 binding to cytosolic thyroid hormone receptor (TR) β1, rapid and sustained Akt activation and IL-12 production. Here we explored the impact of GCs on T3-mediated DC maturation and function and the intracellular events underlying these effects. Dexamethasone (Dex), a synthetic GC, potently inhibited T3-induced stimulation of DCs by preventing the augmented expression of maturation markers and the enhanced IL-12 secretion through mechanisms involving the GC receptor. These effects were accompanied by increased IL-10 levels following exposure of T3-conditioned DCs to Dex. Accordingly, Dex inhibited the immunostimulatory capacity of T3-matured DCs on naive T-cell proliferation and IFN-γ production while increased IL-10 synthesis by allogeneic T cell cultures. A mechanistic analysis revealed the ability of Dex to dampen T3 responses through modulation of Akt phosphorylation and cytoplasmic-nuclear shuttling of nuclear factor-κB (NF-κB). In addition, Dex decreased TRβ1 expression in both immature and T3-maturated DCs through mechanisms involving the GC receptor. Thus GCs, which are increased during the resolution of inflammatory responses, counteract the immunostimulatory effects of T3 on DCs and their ability to polarize adaptive immune responses toward a T helper (Th)-1-type through mechanisms involving, at least in part, NF-κB- and TRβ1-dependent pathways. Our data provide an alternative mechanism for the anti-inflammatory effects of GCs with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits. © 2011 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: PICT 2008-0890 
536 |a Detalles de la financiación: Secretaria de Ciencia y Tecnología - Universidad Nacional de Córdoba 
536 |a Detalles de la financiación: Cancer Research Institute 
536 |a Detalles de la financiación: Ministerio de Ciencia y Tecnología, Gobierno de la Provincia de Córdoba 
536 |a Detalles de la financiación: This work was supported by grants from the National Agency for Promotion of Science and Technology PICT 2008-0890 (to A.M.M.), Ministerio de Ciencia y Tecnología del Gobierno de Córdoba (to C.G.P.), Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (to C.G.P. and A.M.M.), Cancer Research Institute (to G.A.R.) and Fundación Sales (to G.A.R.). M.M.M., G.A.R. and C.G.P. are members of the research career of CONICET. V.A.A., I.D.M. and S.S. are research fellows of CONICET. N.G. is a research fellow of FONCYT. 
593 |a Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina 
593 |a Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a DENDRITIC CELLS 
690 1 0 |a DEXAMETHASONE 
690 1 0 |a THYROID HORMONE ACTION 
690 1 0 |a DEXAMETHASONE 
690 1 0 |a GLUCOCORTICOID RECEPTOR 
690 1 0 |a IMMUNOGLOBULIN ENHANCER BINDING PROTEIN 
690 1 0 |a INTERLEUKIN 10 
690 1 0 |a INTERLEUKIN 12 
690 1 0 |a LIOTHYRONINE 
690 1 0 |a PROTEIN KINASE B 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANTIINFLAMMATORY ACTIVITY 
690 1 0 |a ARTICLE 
690 1 0 |a CELL MATURATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOKINE PRODUCTION 
690 1 0 |a CYTOKINE RELEASE 
690 1 0 |a DENDRITIC CELL 
690 1 0 |a DRUG EFFECT 
690 1 0 |a DRUG MECHANISM 
690 1 0 |a FEMALE 
690 1 0 |a LYMPHOCYTE PROLIFERATION 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a TH1 CELL 
690 1 0 |a ADAPTIVE IMMUNITY 
690 1 0 |a ADJUVANTS, IMMUNOLOGIC 
690 1 0 |a ANIMALS 
690 1 0 |a BIOLOGICAL MARKERS 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELLS, CULTURED 
690 1 0 |a DENDRITIC CELLS 
690 1 0 |a DEXAMETHASONE 
690 1 0 |a GLUCOCORTICOIDS 
690 1 0 |a INTERFERON-GAMMA 
690 1 0 |a INTERLEUKIN-10 
690 1 0 |a INTERLEUKIN-12 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED C57BL 
690 1 0 |a NF-KAPPA B 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PROTO-ONCOGENE PROTEINS C-AKT 
690 1 0 |a RECEPTORS, GLUCOCORTICOID 
690 1 0 |a RECEPTORS, THYROID HORMONE 
690 1 0 |a T-LYMPHOCYTES 
690 1 0 |a TRIIODOTHYRONINE 
700 1 |a Alamino, V.A. 
700 1 |a Mascanfroni, I.D. 
700 1 |a Susperreguy, S. 
700 1 |a Gigena, N. 
700 1 |a Masini-Repiso, A.M. 
700 1 |a Rabinovich, G.A. 
700 1 |a Pellizas, C.G. 
773 0 |d 2012  |g v. 77  |h pp. 67-76  |k n. 1-2  |p Steroids  |x 0039128X  |w (AR-BaUEN)CENRE-577  |t Steroids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-83655167058&doi=10.1016%2fj.steroids.2011.10.006&partnerID=40&md5=3fdac1a0c4de2777bdbbd0cd94f4d54a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.steroids.2011.10.006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0039128X_v77_n1-2_p67_Montesinos  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0039128X_v77_n1-2_p67_Montesinos  |y Registro en la Biblioteca Digital 
961 |a paper_0039128X_v77_n1-2_p67_Montesinos  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70898