Lifshitz scalar fields: One loop renormalization in curved backgrounds

We consider an interacting Lifshitz field with z=3 in a curved spacetime. We analyze the renormalizability of the theory for interactions of the form λn, with arbitrary even n. We compute the running of the coupling constants both in the ultraviolet and infrared regimes. We show that the Lorentz-vio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: López Nacir, D.L
Otros Autores: Mazzitelli, F.D, Trombetta, L.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07501caa a22007457a 4500
001 PAPER-9908
003 AR-BaUEN
005 20230518203954.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84856713957 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRVDA 
100 1 |a López Nacir, D.L. 
245 1 0 |a Lifshitz scalar fields: One loop renormalization in curved backgrounds 
260 |c 2012 
270 1 0 |m López Nacir, D.L.; Departamento de Física, IFIBA, Pabellón I, 1428 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Liberati, S., MacCione, L., (2009) Annu. Rev. Nucl. Part. Sci., 59, p. 245. , See, ARPSDF 0163-8998 10.1146/annurev.nucl.010909.083640 
504 |a Hořava, P., (2009) Phys. Rev. D, 79, p. 084008. , PRVDAQ 1550-7998 10.1103/PhysRevD.79.084008 
504 |a Pospelov, M., Shang, Y., arXiv:1010.5249v3; Giribet, G., Nacir, D.L., Mazzitelli, F.D., J. High Energy Phys., 2010 (9), p. 009. , JHEPFG 1029-8479 10.1007/JHEP09(2010)009 
504 |a Calcagni, G., J. High Energy Phys., 2009 (9), p. 112. , JHEPFG 1029-8479 10.1088/1126-6708/2009/09/112 
504 |a Mukohyama, S., J. Cosmol. Astropart. Phys., 2009 (6), p. 001. , 1475-7516 10.1088/1475-7516/2009/06/001 
504 |a Izumi, K., Kobayashi, T., Mukohyama, S., J. Cosmol. Astropart. Phys., 2010 (10), p. 031. , 1475-7516 10.1088/1475-7516/2010/10/031 
504 |a Alexandre, J., Farakos, K., Tsapalis, A., (2010) Phys. Rev. D, 81, p. 105029. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.105029 
504 |a Alexandre, J., Farakos, K., Pasipoularides, P., Tsapalis, A., (2010) Phys. Rev. D, 81, p. 045002. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.045002 
504 |a Iengo, R., Russo, J.G., Serone, M., J. High Energy Phys., 2009 (11), p. 020. , JHEPFG 1029-8479 10.1088/1126-6708/2009/11/020 
504 |a Gomes, P.R.S., Gomes, M., arXiv:1107.6040v1; Iengo, R., Serone, M., (2010) Phys. Rev. D, 81, p. 125005. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.125005 
504 |a Alexandre, J., (2011) Int. J. Mod. Phys. A, 26, p. 4523. , IMPAEF 0217-751X 10.1142/S0217751X11054656 
504 |a Eune, M., Kim, W., Son, E.J., (2011) Phys. Lett. B, 703, p. 100. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.07.057 
504 |a Farakos, K., Metaxas, D., For z=3, see also arXiv:1109.0421v1; Anber, M.M., Donoghue, J.F., (2011) Phys. Rev. D, 83, p. 105027. , PRVDAQ 1550-7998 10.1103/PhysRevD.83.105027 
504 |a Bagnuls, C., Bervillier, C., (2001) Phys. Rep., 348, p. 91. , See, PRPLCM 0370-1573 10.1016/S0370-1573(00)00137-X 
504 |a Liao, S.B., Polonyi, J., (1993) Ann. Phys., 222, p. 122. , ANPYA2 0003-4916 10.1006/aphy.1993.1019 
504 |a Blas, D., Pujolas, O., Sibiryakov, S., (2010) Phys. Rev. Lett., 104, p. 181302. , PRLTAO 0031-9007 10.1103/PhysRevLett.104.181302 
504 |a Anselmi, D., Halat, M., (2007) Phys. Rev. D, 76, p. 125011. , PRVDAQ 1550-7998 10.1103/PhysRevD.76.125011 
504 |a Visser, M., (2009) Phys. Rev. D, 80, p. 025011. , PRVDAQ 1550-7998 10.1103/PhysRevD.80.025011 
504 |a Visser, M., arXiv:0912.4757v1; Paz, J.P., Mazzitelli, F.D., (1988) Phys. Rev. D, 37, p. 2170. , PRVDAQ 0556-2821 10.1103/PhysRevD.37.2170 
504 |a Collins, J., Perez, A., Sudarsky, D., Urrutia, L., Vucetich, H., (2004) Phys. Rev. Lett., 93, p. 191301. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.191301 
504 |a Nesterov, D., Solodukhin, S.N., (2011) Nucl. Phys., 842, p. 141. , NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.08.006 
504 |a Morris, T.R., Turner, M.D., (1998) Nucl. Phys., 509, p. 637. , NUPBBO 0550-3213 10.1016/S0550-3213(97)00640-8 
504 |a Morris, T.R., (1994) Phys. Lett. B, 329, p. 241. , PYLBAJ 0370-2693 10.1016/0370-2693(94)90767-6 
504 |a Bezrukov, F.L., Shaposhnikov, M., (2008) Phys. Lett. B, 659, p. 703. , PYLBAJ 0370-2693 10.1016/j.physletb.2007.11.072 
504 |a Qiu, T., Maity, D., arXiv:1104.4386v1; Lerner, R.N., McDonald, J., J. Cosmol. Astropart. Phys., 2010 (4), p. 015. , 1475-7516 10.1088/1475-7516/2010/04/015 
504 |a Burgess, C.P., Lee, H.M., Trott, M., J. High Energy Phys., 2010 (7), p. 007. , JHEPFG 1029-8479 10.1007/JHEP07(2010)007 
504 |a Bezrukov, F., Magnin, A., Shaposhnikov, M., Sibiryakov, S., J. High Energy Phys., 2011 (1), p. 016. , JHEPFG 1029-8479 10.1007/JHEP01(2011)016 
504 |a Atkins, M., Calmet, X., (2011) Phys. Lett. B, 697, p. 37. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.01.028 
504 |a Giudice, G.F., Lee, H.M., (2011) Phys. Lett. B, 694, p. 294. , PYLBAJ 0370-2693 10.1016/j.physletb.2010.10.035 
504 |a Onofrio, R., (2010) Phys. Rev. D, 82, p. 065008. , PRVDAQ 1550-7998 10.1103/PhysRevD.82.065008 
504 |a Onofrio, R., (2010) Int. J. Mod. Phys. A, 25, p. 2260. , IMPAEF 0217-751X 10.1142/S0217751X10049530 
504 |a Kostelecky, V.A., Mewes, M., (2001) Phys. Rev. Lett., 87, p. 251304. , PRLTAO 0031-9007 10.1103/PhysRevLett.87.251304 
504 |a Prasanna, A.R., Mohanty, S., (2003) Classical Quantum Gravity, 20, p. 3023. , CQGRDG 0264-9381 10.1088/0264-9381/20/14/304 
504 |a Chu, Y.-Z., Jacobs, D.M., Ng, Y., Starkman, G.D., (2010) Phys. Rev. D, 82, p. 064022. , PRVDAQ 1550-7998 10.1103/PhysRevD.82.064022 
520 3 |a We consider an interacting Lifshitz field with z=3 in a curved spacetime. We analyze the renormalizability of the theory for interactions of the form λn, with arbitrary even n. We compute the running of the coupling constants both in the ultraviolet and infrared regimes. We show that the Lorentz-violating terms generate couplings to the spacetime metric that are not invariant under general coordinate transformations. These couplings are not suppressed by the scale of Lorentz violation and therefore survive at low energies. We point out that in these theories, unless the effective mass of the field is many orders of magnitude below the scale of Lorentz violation, the coupling to the four-dimensional Ricci scalar ξ( 4)R 2 does not receive large quantum corrections ξ1. We argue that quantum corrections involving spatial derivatives of the lapse function (which appear naturally in the so-called healthy extension of the Hořava-Lifshitz theory of gravity) are not generated unless they are already present in the bare Lagrangian. © 2012 American Physical Society.  |l eng 
593 |a Departamento de Física, IFIBA, Pabellón I, 1428 Buenos Aires, Argentina 
593 |a Centro Atómico Bariloche Comisión Nacional de Energía Atómica, R8402AGP Bariloche, Argentina 
700 1 |a Mazzitelli, F.D. 
700 1 |a Trombetta, L.G. 
773 0 |d 2012  |g v. 85  |k n. 2  |p Phys Rev D Part Fields Gravit Cosmol  |x 15507998  |t Physical Review D - Particles, Fields, Gravitation and Cosmology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856713957&doi=10.1103%2fPhysRevD.85.024051&partnerID=40&md5=5f908d5d5aee558d1d412b3cf6f7d0a4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevD.85.024051  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15507998_v85_n2_p_LopezNacir  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v85_n2_p_LopezNacir  |y Registro en la Biblioteca Digital 
961 |a paper_15507998_v85_n2_p_LopezNacir  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70861