Periodic solutions of angiogenesis models with time lags

To enrich the dynamics of mathematical models of angiogenesis, all mechanisms involved are time-dependent. We also assume that the tumor cells enter the mechanisms of angiogenic stimulation and inhibition with some delays. The models under study belong to a special class of nonlinear nonautonomous s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Amster, P.
Otros Autores: Berezansky, L., Idels, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10701caa a22009737a 4500
001 PAPER-9890
003 AR-BaUEN
005 20230518203953.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-80052813029 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Amster, P. 
245 1 0 |a Periodic solutions of angiogenesis models with time lags 
260 |c 2012 
270 1 0 |m Amster, P.; Universidad de Buenos Aires, Departamento de Matemática, Ciudad Universitaria - Pab. I, 1428 - Buenos Aires, Argentina; email: pamster@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Folkman, J., Angiogenesis (2003) Encyclopedia of Genetics, pp. 66-73 
504 |a Folkman, J., Klagsbrun, M., Angiogenic factors (1987) Science, 235 (4787), pp. 442-447 
504 |a Liersch, R., Berdel, W., Kessler, T., Angiogenesis inhibition (2010) Recent Results in Cancer Research, 17, p. 231. , 1st edition 
504 |a Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L., Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy (1999) Cancer Research, 59 (19), pp. 4770-4775 
504 |a Andersen, L.K., Mackey, M.C., Resonance in periodic chemotherapy: A case study of acute myelogenous leukemia (2001) Journal of Theoretical Biology, 209 (1), pp. 113-130. , DOI 10.1006/jtbi.2000.2255 
504 |a Liu, Z., Zhong, S., Yin, C., Chen, W., Permanence, extinction and periodic solutions in a mathematical model of cell populations affected by periodic radiation (2011) Applied Mathematics Letters, 24, pp. 1745-1750 
504 |a Swierniak, A., Kimmel, M., Smieja, J., Mathematical modeling as a tool for planning anticancer therapy (2009) European Journal of Pharmacology, 625, pp. 108-121 
504 |a Macklin, P., Lowengrub, J., Nonlinear simulation of the effect of microenvironment on tumor growth (2007) Journal of Theoretical Biology, 245 (4), pp. 677-704. , DOI 10.1016/j.jtbi.2006.12.004, PII S0022519306005649 
504 |a Kuang, Y., (1993) Delay Differential Equations with Applications in Population Dynamics, 191. , Mathematics in Science and Engineering Academic Press, Inc. Boston, MA 
504 |a Andrew, S.M., Baker, C.T.H., Bocharov, G.A., Rival approaches to mathematical modelling in immunology (2007) Journal of Computational and Applied Mathematics, 205 (2), pp. 669-686. , DOI 10.1016/j.cam.2006.03.035, PII S037704270600392X 
504 |a Banerjee, S., Sarkar, R.R., Delay-induced model for tumor-immune interaction and control of malignant tumor growth (2008) BioSystems, 91 (1), pp. 268-288. , DOI 10.1016/j.biosystems.2007.10.002, PII S0303264707001499 
504 |a Byrne, H.M., The effect of time delays on the dynamics of avascular tumor growth (1997) Mathematical Biosciences, 144 (2), pp. 83-117. , DOI 10.1016/S0025-5564(97)00023-0, PII S0025556497000230 
504 |a D'Onofrio, A., Gatti, F., Cerrai, P., Freschi, L., Delay-induced oscillatory dynamics of tumour immune system interaction (2010) Mathematical and Computer Modelling, 51, pp. 572-591 
504 |a Xu, S., Analysis of a delayed mathematical model for tumor growth (2010) Nonlinear Analysis: Real World Applications, 11, pp. 4121-4127 
504 |a Sachs, R.K., Hlatky, L.R., Hahnfeldt, P., Simple ODE models of tumor growth and anti-angiogenic or radiation treatment (2001) Mathematical and Computer Modelling, 33 (12-13), pp. 1297-1305. , DOI 10.1016/S0895-7177(00)00316-2, PII S0895717700003162 
504 |a Restsky, M.W., Swartzendruber, D.E., Wardwell, R.H., Bame, P.D., Is Gompertzian or exponential kinetics a valid description of individual human cancer growth? (1990) Medical Hypotheses, 33 (2), pp. 95-106. , DOI 10.1016/0306-9877(90)90186-I 
504 |a Araujo, R.P., McElwain, D.L.S., A history of the study of solid tumour growth: The contribution of mathematical modelling (2004) Bulletin of Mathematical Biology, 66 (5), pp. 1039-1091. , DOI 10.1016/j.bulm.2003.11.002, PII S0092824003001265 
504 |a D'Onofrio, A., Metamodeling tumor immune system interaction, tumor evasion and immunotherapy (2008) Mathematical and Computer Modelling, 47, pp. 614-637 
504 |a Amster, P., Berezansky, L., Idels, L., Stability of hahnfeldt angiogenesis models with time lags (2011) Mathematical and Computer Modelling, , arxiv:1105.3260v1 
504 |a Berezansky, L., Braverman, E., Domoshnitsky, A., Stability of the second order delay differential equations with a damping term (2008) Differential Equations and Dynamical Systems, 16, pp. 3-24 
504 |a Diblik, J., Koksch, N., Sufficient conditions for the existence of global solutions of delayed differential equations (2006) Journal of Mathematical Analysis and Applications, 318 (2), pp. 611-625. , DOI 10.1016/j.jmaa.2005.06.020, PII S0022247X05005664 
504 |a Gyori, I., Hartung, F., Fundamental solution and asymptotic stability of linear delay differential equations (2006) Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 13 (2), pp. 261-287 
504 |a Krisztin, T., Global dynamics of delay differential equations (2008) Periodica Mathematica Hungarica, 56, pp. 83-95 
504 |a Muroya, Y., Global stability for separable nonlinear delay differential systems (2007) Journal of Mathematical Analysis and Applications, 326 (1), pp. 372-389. , DOI 10.1016/j.jmaa.2006.01.094, PII S0022247X06002277 
504 |a Sherera, E., Hannemanna, R., Rundellb, A., Ramkrishnaa, D., Analysis of resonance chemotherapy in leukemia treatment via multi-staged population balance models (2006) Journal of Theoretical Biology, 240, pp. 648-661 
504 |a Alzabut, J., Nieto, J., Stamov, G., Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis (2009) Boundary Value Problems, pp. 1-10 
504 |a Bellouquid, A., De Angelis, E., From kinetic models of multicellular growing systems to macroscopic biological tissue models (2011) Nonlinear Analysis: Real World Applications, 12, pp. 1111-1122 
504 |a Delgado, M., Gayte, I., Morales-Rodrigo, C., Suarez, A., An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary (2010) Nonlinear Analysis: Theory, Methods & Applications, 72, pp. 330-347 
504 |a Delgado, M., Morales-Rodrigo, C., Suarez, A., Tello, J., On a parabolic-elliptic chemotactic model with coupled boundary conditions (2010) Nonlinear Analysis: Real World Applications, 11, pp. 3884-3902 
504 |a Ito, A., Gokieli, M., Niezgodka, M., Szyman'Ska, Z., Local existence and uniqueness of solutions to approximate systems of 1D tumor invasion model (2010) Nonlinear Analysis: Real World Applications, 11, pp. 3555-3566 
504 |a Kassara, K., Moustafid, A., Angiogenesis inhibition and tumor-immune interactions with chemotherapy by a control set-valued method (2011) Mathematical Biosciences, 231, pp. 135-143 
504 |a Tao, Y., Global existence for a haptotaxis model of cancer invasion with tissue remodeling (2011) Nonlinear Analysis: Real World Applications, 12, pp. 418-435 
504 |a Wei, X., Cui, S., Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth (2008) Nonlinear Analysis: Real World Applications, 9, pp. 1827-1836 
504 |a Wei, X., Guo, C., Global existence for a mathematical model of the immune response to cancer (2010) Nonlinear Analysis: Real World Applications, 11, pp. 3903-3911 
504 |a Lloyd, N., (1978) Degree Theory, , Cambridge University. Press Cambridge 
504 |a Mawhin, J., (1979) Topological Degree Methods in Nonlinear Boundary Value Problems, 40. , CBMS Regional Conference Series in Mathematics Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 915, 1977 American Mathematical Society Providence, RI 
504 |a Ronto, M., Trofimchuk, S., Numerical-analytic method for non-linear differential equations (1998) Public University of Miskolc, Series D, 38, pp. 97-116 
520 3 |a To enrich the dynamics of mathematical models of angiogenesis, all mechanisms involved are time-dependent. We also assume that the tumor cells enter the mechanisms of angiogenic stimulation and inhibition with some delays. The models under study belong to a special class of nonlinear nonautonomous systems with delays. Explicit sufficient and necessary conditions for the existence of the positive periodic solutions were obtained via topological methods. Numerical examples illustrate our findings. Some open problems are presented for further studies. © 2011 Elsevier Ltd. All rights reserved.  |l eng 
593 |a Universidad de Buenos Aires, Departamento de Matemática, Ciudad Universitaria - Pab. I, 1428 - Buenos Aires, Argentina 
593 |a Department of Mathematics, Ben-Gurion University of Negev, Beer-Sheva 84105, Israel 
593 |a Department of Mathematics, Vancouver Island University, 900 Fifth St., Nanaimo, BC, V9S5S5, Canada 
690 1 0 |a A PRIORI ESTIMATES 
690 1 0 |a ANGIOGENESIS 
690 1 0 |a EXISTENCE OF POSITIVE PERIODIC SOLUTIONS 
690 1 0 |a LERAYSCHAUDER DEGREE METHODS 
690 1 0 |a NONLINEAR NONAUTONOMOUS DELAY DIFFERENTIAL EQUATIONS 
690 1 0 |a SECOND ORDER LIENARD TYPE EQUATION 
690 1 0 |a A-PRIORI ESTIMATES 
690 1 0 |a ANGIOGENESIS 
690 1 0 |a EXISTENCE OF POSITIVE PERIODIC SOLUTIONS 
690 1 0 |a LERAYSCHAUDER DEGREE METHODS 
690 1 0 |a NONAUTONOMOUS 
690 1 0 |a SECOND ORDERS 
690 1 0 |a DIFFERENTIAL EQUATIONS 
690 1 0 |a DIFFERENTIATION (CALCULUS) 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a NONLINEAR EQUATIONS 
690 1 0 |a PROBLEM SOLVING 
700 1 |a Berezansky, L. 
700 1 |a Idels, L. 
773 0 |d 2012  |g v. 13  |h pp. 299-311  |k n. 1  |p Nonlinear Anal. Real World Appl.  |x 14681218  |w (AR-BaUEN)CENRE-1788  |t Nonlinear Analysis: Real World Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052813029&doi=10.1016%2fj.nonrwa.2011.07.035&partnerID=40&md5=dd615d3228532858a8565f535a1a4e74  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.nonrwa.2011.07.035  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14681218_v13_n1_p299_Amster  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14681218_v13_n1_p299_Amster  |y Registro en la Biblioteca Digital 
961 |a paper_14681218_v13_n1_p299_Amster  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70843