Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis

Both saline and alkaline conditions frequently coexist in nature; however, little is known about the effects of alkaline and salt-alkaline stresses on plants. We performed pot experiments with four treatments, control without salt addition and three stress conditions-neutral, alkaline, and mixed sal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Paz, R.C
Otros Autores: Rocco, R.A, Reinoso, H., Menéndez, A.B, Pieckenstain, F.L, Ruiz, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17942caa a22013697a 4500
001 PAPER-9873
003 AR-BaUEN
005 20230518203951.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84864549601 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPGRD 
100 1 |a Paz, R.C. 
245 1 0 |a Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis 
260 |c 2012 
270 1 0 |m Menéndez, A. B.; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: anamen@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alam, S.M., Nutrient uptake by plants under stress conditions (1993) Handbook of Plant and Crop Stress, pp. 227-246. , M. Pessarakli (Ed.), New York: Marcel Dekker Inc 
504 |a Bahaji, A., Mateu, I., Sanz, A., Cornejo, M.J., Common and distinctive responses of rice seedlings to saline- and osmotically-generated stress (2002) Plant Growth Regul, 38, pp. 83-94 
504 |a Baum, S.F., Tran, P.N., Silk, W.K., Effects of salinity on xylem structure and water use in growing leaves of sorghum (2000) New Phytol, 146, pp. 119-127 
504 |a Benton, J.J., Case, V.W., Sampling, handling and analysis plant tissue samples. Chap 15 (1990) Soil Testing and Plant Analysis, , 3rd edn., R. L. Westerman (Ed.), Madison: Soil Science Society of America 
504 |a Cakmak, I., Marschner, H., Bangerth, F., Effect of Zn nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris) (1989) J Exp Bot, 40, pp. 405-412 
504 |a Cartmill, A., Valdez-Aguilar, L.A., Bryan, D.A., Alarcón, A., Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water (2008) Sci Hortic (Amst), 115, pp. 275-284 
504 |a Chen, S., Li, J., Wang, S., Hüttermann, A., Altman, A., Salt, nutrient uptake and transport, and ABA of Populus euphratica: a hybrid in response to increasing soil NaCl (2001) Trees, 15, pp. 186-194 
504 |a Clark, R.B., Plant response to mineral element toxicity and deficiency (1982) Breeding Plants for less Favorable Environments, pp. 71-142. , M. N. Christiansen and C. F. Lewis (Eds.), New York: Wiley 
504 |a Costa, J.L., García, F.O., Respuesta de un pastizal natural a la fertilización con fósforo y nitrógeno en un natracuol (1998) Ria, 28, pp. 31-39 
504 |a Cramer, G.R., Lauchli, A., Epstein, E., Effects of NaCl and CaCl 2 on ion activities in complex nutrient solutions and root growth of cotton (1986) Plant Physiol, 81, pp. 792-797 
504 |a Dhingra, H.R., Varghese, T.M., Effect of salt stress on viability, germination and endogenous levels of some metabolites and ions in maize (Zea mays L.) pollen (1985) Ann Bot-Lond, 55, pp. 415-420 
504 |a Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Maiale, S., Ruiz, O.A., Menéndez, A.B., Phenotypic plasticity with respect to salt stress response by Lotus glaber: the role of its AM fungal and rhizobia symbionts (2008) Mycorrhiza, 18, pp. 317-329 
504 |a Fitter, A.H., An architectural approach to the comparative ecology of plant root systems (1987) New Phytol, 106, pp. 61-67 
504 |a Fitter, A.H., Stickland, T.R., Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species (1991) New Phytol, 118, pp. 383-389 
504 |a Gadallah, M.A.A., Effects of proline and glycinebetaine on Vicia faba responses to salt stress (1999) Biol Plant, 42, pp. 249-257 
504 |a Garcia, A.B., Engler, J.D., Iyer, S., Gerats, T., van Montagu, M., Caplan, A.B., Effects of osmoprotectants upon NaCl stress in rice (1997) Plant Physiol, 115, pp. 159-169 
504 |a Gersani, M., Graham, E.A., Nobel, P.S., Growth responses of individual roots of Opuntia ficus-indica to salinity (1993) Plant Cell Environ, 16, pp. 827-834 
504 |a Gharsalli, M., Zribi, K., Hajji, M., Physiological responses of pea to iron deficiency induced by bicarbonate (2001) Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research, pp. 606-607. , W. J. Horst (Ed.), New York: Springer, (Developments in Plant and Soil Sciences) 
504 |a Greenway, H., Munns, R., Mechanism of salt tolerance in non-halophytes (1980) Ann Rev Plant Physiol, 31, pp. 149-190 
504 |a Hajiboland, R., Yang, X.E., Römheld, V., Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice, wheat and rye (2003) Plant Soil, 250, pp. 349-357 
504 |a Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular response to high salinity (2000) Annu Rev Plant Physiol Plant Mol Biol, 51, pp. 463-499 
504 |a Hosseini, S.M., Maftoun, M., Karimian, N., Ronaghi, A., Emam, Y., Effect of zinc X boron interaction on plant growth and tissue nutrient concentration of corn (2007) J Plant Nutr, 30, pp. 773-781 
504 |a Hummel, I., Vile, D., Violle, C., Devaux, J., Ricci, B., Blanchard, A., Garnier, E., Roumet, C., Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species (2007) New Phytol, 173, pp. 313-321 
504 |a Johansen, D.A., (1940) Plant Microtechnique, , 1st edn., New York: McGraw-Hill Book Company 
504 |a Junghans, U., Polle, A., Düchting, P., Weiles, E., Kuhlman, B., Gruber, F., Teichmann, T., Adaptation to high salinity in poplar involver changes in xylem anatomy and auxin physiology (2006) Plant Cell Environ, 29, pp. 1519-1531 
504 |a Kirkbride, J.H., The scientific name of narrow-leaf trefoil (2006) Crop Sci, 46, pp. 2169-2170 
504 |a Kramer, D., Transfer cells in the epidermis of roots (1980) Plant Membrane Transport: Current Conceptual Issues, , R. M. Spanswick, W. Lucas, and J. Dainty (Eds.), Amsterdam: Elsevier/North Holland Biomedical Press 
504 |a Kurth, E., Cramer, G.R., Läuchli, A., Epstein, E., Effects of NaCl and CaCl 2 on cell enlargement and cell production in cotton roots (1986) Plant Physiol, 82, pp. 1102-1106 
504 |a Lahaye, P.A., Epstein, E., Calcium and salt tolerance by bean plants (1971) Plant Physiol, 25, p. 213 
504 |a Li, P.H., Zhang, H., Wang, B.S., Ionic homeostasis of plant under salt stress (2003) Acta Bot Boreal-Occident Sin, 23, pp. 1810-1817 
504 |a Li, R., Shi, F., Fukuda, K., Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae) (2010) S Afr J Bot, 76, pp. 380-387 
504 |a Lynch, J., Root architecture and plant productivity (1995) Plant Physiol, 109, pp. 7-13 
504 |a Magné, C., Larher, F., High sugar content of extracts interferes with colorimetric determination of amino acids and free proline (1992) Anal Biochem, 200, pp. 115-118 
504 |a Manchanda, G., Garg, N., Salinity and its effects on the functional biology of legumes (2008) Acta Physiol Plant, 30, pp. 595-618 
504 |a Mansour, M.M.F., Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress (1998) Plant Physiol Biochem, 36, pp. 767-772 
504 |a Marschner, H., (1995) Mineral Nutrition of Higher Plants, , 2nd edn., London: Academic Press 
504 |a Mazzanti, A., Darwich, N.A., Cheppi, C., Sarlangue, H., Persistencia de pasturas cultivadas en zonas ganaderas de la Pcia. De Buenos Aires (1986) Rev Argent Producción Anim, 6, p. 65 
504 |a Mendoza, R., Escudero, V., García, I., Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil (2005) Plant Soil, 275, pp. 305-315 
504 |a Montes, L., (1988) Rev Arg Prod Anim, 8, pp. 367-376 
504 |a Munns, R., Comparative physiology of salt and water stress (2002) Plant Cell Environ, 25, pp. 239-250 
504 |a Munns, R., Schachtman, D.P., Condon, A.G., The significance of a two-phase growth response to salinity in wheat and barley (1995) Aust J Plant Physiol, 13, pp. 143-160 
504 |a Neumann, G., Massonneau, A., Martinoia, E., Romheld, V., Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin (1999) Planta, 208, pp. 373-382 
504 |a Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M., Ion homeostasis in NaCl stress environments (1995) Plant Physiol, 109, pp. 735-742 
504 |a Radić, S., Prolić, M., Pavlica, M., Pevalek-Kozlina, B., Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L (2005) Environ Exp Bot, 54, pp. 213-218 
504 |a Rea, P.A., Sanders, D., Tonoplast energisation: two H + pumps, one membrane (1987) Physiol Plant, 71, pp. 131-141 
504 |a Reinoso, H., Sosa, L., Ramírez, L., Luna, V., Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae) (2004) Can J Bot, 82, pp. 618-628 
504 |a Rengel, A., Römheld, V., Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency (2000) Plant Soil, 222, pp. 25-34 
504 |a Sannazzaro, A.I., Ruiz, O., Albertó, E., Menéndez, A., Alleviation of salt stress in Lotus glaber by Glomus intraradices (2006) Plant Soil, 285, pp. 279-287 
504 |a Sannazzaro, A.I., Echeverria, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiol Biochem, 45, pp. 39-46 
504 |a Shelp, B.J., Physiology and biochemistry of boron in plants (1993) Boron and Its Role in Crop Production, pp. 53-85. , U. C. Gupta (Ed.), Boca Raton: CRC Press 
504 |a Shi, D.C., Relaxation of Na 2CO 3 stress on Puccinellia tenuiflora (Griseb.) Scibn. Et Merr. plants by neutralizing with H 3PO 4 (1995) Acta Prataculturae Sin, 3, pp. 34-38 
504 |a Shi, D., Sheng, Y., Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors (2005) Environ Exp Bot, 54, pp. 8-21 
504 |a Shi, D., Sheng, Y., Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag (2005) Plant Soil, 271, pp. 15-26 
504 |a Shi, D.C., Wang, D., Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag (2005) Plant Soil, 271, pp. 15-26 
504 |a Shi, D.C., Yin, L.J., Difference between salt (NaCl) and alkaline (Na 2CO 3) stresses on Puccinellia tenuiflora (Griseb.) Scribn et Merr. plants (1993) Acta Bot Sin, 35, pp. 144-149 
504 |a Sinha, P., Jain, R., Chatterjee, C., Interactive effect of boron and zinc on growth and metabolism of mustard (2000) Commun Soil Sci Plant Anal, 31, pp. 41-49 
504 |a Sorgonà, A., Cacco, G., Linking the physiological parameters of nitrate uptake with root morphology and topology in wheat (Triticum durum) and citrus (Citrus volkameriana) rootstock (2002) Can J Bot, 80, pp. 494-503 
504 |a Tang, C., Turner, N.C., The influence of alkalinity and water stress on the stomatal conductance, photosynthetic rate and growth of Lupinus angustifolius L. and Lupinus pilosus Murr (1999) Aust J Exp Agric, 39, pp. 457-464 
504 |a Tanji, K.K., Nature and extent of agricultural salinity (1990) Agricultural Salinity Assessment and Management, pp. 1-18. , K. K. Tanji (Ed.), New York: American Society of Civil Engineers 
504 |a Teakle, N.L., Real, D., Colmer, T.D., Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legume Lotus corniculatus and Lotus tenuis (2006) Plant Soil, 289, pp. 369-383 
504 |a Teakle, N.L., Flowers, T.J., Real, D., Colmer, T.D., Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na + and Cl - from the xylem (2007) J Exp Bot, 58 (8), pp. 2169-2180 
504 |a Tester, M., Davenport, R., Na + tolerance and Na + transport in plants (2003) Ann Bot, 91, pp. 503-527 
504 |a Torrey, J.G., Chemical factors limiting lateral root formation in isolated pea roots (1956) Physiol Plant, 9, pp. 370-388 
504 |a Trencia, J., Identification de descripteurs morphometriques sensibles aux conditions generales de croissance des semis de chene rouge (Quercus rubra) en milieu natural (1995) Can J Forest Res, 25, pp. 157-165 
504 |a Troll, W., Lindsley, J., The photometric methods to determination of proline (1955) J Biol Chem, 215, pp. 655-660 
504 |a Valdez-Aguilar, L.A., Reed, D.W., Response of selected greenhouse ornamental plants to alkalinity in irrigation water (2007) J Plant Nutr, 30, pp. 441-452 
504 |a Valdez-Aguilar, L.A., Reed, D.W., Influence of potassium substitution by rubidium and sodium on growth, ion accumulation, and ion partitioning in bean under high alkalinity (2008) J Plant Nutr, 31, pp. 867-883 
504 |a Vigo, C., Therios, I.N., Bosabalidis, A.M., Plant growth, nutrient concentration, and leaf anatomy of olive plants irrigated with diluted seawater (2005) J Plant Nutr, 28 (6), pp. 1001-1021 
504 |a Waisel, Y., Breckle, S.W., Differences in responses of various radish roots to salinity (1987) Plant Soil, 104, pp. 191-194 
504 |a Wang, Y., Guo, J.X., Meng, Q.L., Cui, X.Y., Physiological responses of krishum (Iris lactea Pall. var. chinensis Koidz) to neutral and alkaline salts (2008) J Agron Crop Sci, 194, pp. 429-437 
504 |a Yang, C., Chong, J., Changyou, L., Kim, C., Shi, D., Wang, D., Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions (2007) Plant Soil, 294, pp. 263-276 
504 |a Yang, C., Shi, D., Wang, D., Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge) (2008) Plant Growth Regul, 56, pp. 179-190 
504 |a Yeo, A.R., Molecular biology of salt tolerance in the context of whole-plant physiology (1998) J Exp Bot, 49, pp. 915-929 
520 3 |a Both saline and alkaline conditions frequently coexist in nature; however, little is known about the effects of alkaline and salt-alkaline stresses on plants. We performed pot experiments with four treatments, control without salt addition and three stress conditions-neutral, alkaline, and mixed salt-alkaline-to determine their effects on growth, nutrient accumulation and root architecture in the glycophytic species Lotus tenuis. Neutral and alkaline salts produced a similar detrimental effect on L. tenuis growth, whereas the effect of their combination was synergistic. Neutral salt addition, alone or mixed with NaHCO 3, led to significant leaf Na + build up and reduced K + concentration. In contrast, in plants treated with NaHCO 3 only, Na + levels and the Na +/K + ratio remained relatively unchanged. Proline accumulation was not affected by the high pH in the absence of NaCl, but it was raised by the neutral salt and mixed treatments. The total root length was reduced by the addition of NaCl alone, whereas it was not affected by alkalinity, regardless of the presence of NaCl. The topological trend showed that alkalinity alone or mixed with NaCl turned the root more herringbone compared with control roots, whereas no significant change in this index was observed in the treatment with the neutral salt only. The pattern of morphological changes in L. tenuis root architecture after the alkaline treatment (in the absence of NaCl) was similar to that found in the mixed salt-alkaline treatment and different from that observed in neutral salt. A unique root morphological response to the mixed salt-alkaline stress was the reduction in the ratio between xylem vessels and root cross-sectional areas. © 2012 Springer Science+Business Media, LLC.  |l eng 
593 |a Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina 
593 |a Laboratorio de Morfología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, 5800 Rio Cuarto, Córdoba, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Unidad de Biotecnología 1, IIB-IINTECH/CONICET, Chascomús, Buenos Aires, Argentina 
690 1 0 |a ALKALINE STRESS 
690 1 0 |a CARBON ALLOCATION 
690 1 0 |a GROWTH 
690 1 0 |a ION HOMEOSTASIS 
690 1 0 |a LOTUS TENUIS 
690 1 0 |a ROOT ANATOMY 
690 1 0 |a ROOT TOPOLOGY 
690 1 0 |a SALINE STRESS 
690 1 0 |a LOTUS TENUIS 
700 1 |a Rocco, R.A. 
700 1 |a Reinoso, H. 
700 1 |a Menéndez, A.B. 
700 1 |a Pieckenstain, F.L. 
700 1 |a Ruiz, O.A. 
773 0 |d 2012  |g v. 31  |h pp. 448-459  |k n. 3  |p J. Plant Growth Regul.  |x 07217595  |t Journal of Plant Growth Regulation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864549601&doi=10.1007%2fs00344-011-9254-4&partnerID=40&md5=a2968c41874ac571d10e42d899b7c799  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00344-011-9254-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07217595_v31_n3_p448_Paz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07217595_v31_n3_p448_Paz  |y Registro en la Biblioteca Digital 
961 |a paper_07217595_v31_n3_p448_Paz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70826