Primary production of phytoplankton and periphyton in two humic lakes of a South American wetland

Seasonal primary productivities of periphyton and phytoplankton were compared in Grande Lake (GL) and a relict oxbow lake (ROL) in winter 2006 and summer 2007. GL was free of floating plants on the sampling dates and covered over 80 and 100% of the ROL surface in winter and summer, respectively. The...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodríguez, Patricia Laura
Otros Autores: Vera, M.S, Pizarro, H.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09813caa a22008417a 4500
001 PAPER-9859
003 AR-BaUEN
005 20251015142406.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84869098435 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Rodríguez, Patricia Laura 
245 1 0 |a Primary production of phytoplankton and periphyton in two humic lakes of a South American wetland 
260 |c 2012 
270 1 0 |m Rodríguez, P.; Laboratorio de Limnología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad de Buenos Aires, Argentina; email: patriciar@ege.fcen.uba.ar 
504 |a Allende, L., Tell, G., Zagarese, H., Torremorell, A., Pérez, G., Bustingorry, J., Escaray, R., Izaguirre, I., Phytoplankton and primary production in clear-vegetated, inorganic-turbid and algal-turbid shallow lakes from the pampa plain (Argentina) (2009) Hydrobiologia, 624, pp. 45-60. , doi:10.1007/s10750-008-9665-9 
504 |a (2005) Standard methods for the examination of water and wastewaters, , APHA (American Public Health Association), 21st edn. Centennial Edition. APHA, American Water Works Association, Water Environmental Federation, Washington, DC 
504 |a Ask, J., Karlsson, J., Persson, L., Ask, P., Byström, P., Jansson, M., Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes (2009) Ecology, 90, pp. 1923-1932. , doi:10.1890/07-1855.1 
504 |a Dodds, W.K., Biggs, B.J., Lowe, R.L., Photosynthesis-Irradiances patterns in benthic microalgae: variations as a function of assemblage thickness and community structure (1999) J Phycol, 35, pp. 42-53 
504 |a Eilers, P.H.C., Peeters, J.C.H., A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton (1988) Ecol Model, 42, pp. 199-215. , doi:10.1016/0304-3800(88)90057-9 
504 |a Eloranta, P., Humus and water physics (1999) Limnology of humic waters, pp. 59-74. , In: Keskitalo J, Eloranta P (eds) Backhyus, Leiden 
504 |a Goldsborough, L.G., Robinson, G.G.C., Pattern in wetlands (1996) Algal ecology: Freshwater benthic ecosystems, pp. 77-117. , In: Stevenson RJ, Bothwell ML, Lowe RL (eds). Academic, New York 
504 |a Hansson, L.A., Factors regulating periphytic algal biomass (1992) Limnol Oceanogr, 37, pp. 322-328 
504 |a Helbling, E.W., Villafañe, V.E., Holm-Hansen, O., Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing (1994) Ultraviolet radiation in Antarctica: Measurements and biological effects, pp. 207-227. , In: Weiler S, Penhale P (eds), American Geophysical Union, Washington, DC 
504 |a Hill, W., Effects of light (1996) Algal ecology: Freshwater benthic ecosystems, pp. 121-148. , In: Stevenson RJ, Bothwell ML, Lowe RL (eds), Academic, New York 
504 |a Holm-Hansen, O., Helbling, E.W., Técnicas para la medición de la productividad primaria en el fitoplancton (1995) Manual De métodos ficológicos, pp. 329-350. , K. Alveal, M. E. Ferrario, E. C. Oliveira, and E. Sar (Eds.), Concepción: Universidad de Concepción 
504 |a Karlsson, J., Säwström, C., Benthic algae support zooplankton growth during winter in a clear-water lake (2009) Oikos, 118, pp. 539-544. , doi:10.1111/j.1600-0706.2008.17239.x 
504 |a Karlsson, J., Byström, P., Ask, J., Ask, P., Persson, L., Jansson, M., Light limitation of nutrient-poor lake ecosystems (2009) Nature, 460, pp. 506-509. , doi:10.1038/nature08179 
504 |a Kirk, J.T.O., (1994) Light and Photosynthesis in Aquatic Ecosystems, , Cambridge: Cambridge University Press 
504 |a Lepistö, L., Holopainen, A., Occurrence of Cryptophyceae and katablepharids in boreal lakes (2003) Hydrobiologia, 502, pp. 307-314. , doi:10.1023/B:HYDR.0000004288.74485.52 
504 |a Lepistö, L., Holopainen, A., Vuoristo, H., Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes (2004) Limnologica, 34, pp. 236-248. , doi:10.1016/S0075-9511(04)80048-3 
504 |a Liboriussen, L., Jeppesen, E., Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake (2003) Freshw Biol, 48, pp. 418-431. , doi:10.1046/j.1365-2427.2003.01018.x 
504 |a Nusch, E.A., Comparison of different methods for chlorophyll and phaeopigment determination (1980) Arch Hydrobiol Beih Ergebn Limnol, 14, pp. 14-36 
504 |a O'Farrell, I., de Tezanos Pinto, P., Rodríguez, P., Chaparro, G., Pizarro, H., Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology (2009) Freshw Biol, 54, pp. 363-375. , doi:10.1111/j.1365-2427.2008.02117.x 
504 |a Putz, R., Periphyton communities in Amazonian black- and whitewater habitats: community structure, biomass and productivity (1997) Aquat Sci, 59, pp. 74-93. , doi:10.1007/BF02522552 
504 |a Rodríguez, P., Pizarro, H., Phytoplankton productivity in a highly coloured shallow lake of a South American floodplain (2007) Wetlands, 27, pp. 1153-1160. , doi:10.1672/0277-5212(2007)27[1153:PPIAHC]2.0.CO;2 
504 |a Rodríguez, P., Tell, G., Pizarro, H., Epiphytic algal biodiversity in humic shallow lakes from the Lower Paraná River Basin (Argentina) (2011) Wetlands, 31, pp. 53-63. , doi:10.1007/s13157-010-0128-5 
504 |a Stumm, W., Morgan, J.J., (1996) Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters, , New York: Wiley 
504 |a Torremorell, A., Llames, M., Pérez, G., Escaray, R., Bustingorry, J., Zagarese, H., Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light (2009) Freshw Biol, 54, pp. 437-449. , doi:10.1111/j.1365-2427.2008.02119.x 
504 |a van Dam, H., Merters, A., Sinkeldam, J., A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands (1994) Neth J Aquat Ecol, 28, pp. 117-133. , doi:10.1007/BF02334251 
504 |a van der Valk, A., (2007) The Biology of Freshwater Wetlands, , UK: Oxford University Press 
504 |a Vincent, W., Cyanobacterial dominance in the polar regions (2000) The Ecology of Cyanobacteria: Their Diversity in Time and Space, pp. 321-340. , B. Whitton and M. Potts (Eds.), London: Kluwer 
504 |a Wynn-Williams, D., Cyanobacteria in deserts-life at the limit? (2000) The Ecology of Cyanobacteria: Their Diversity in Time and Space, pp. 341-366. , B. Whitton and M. Potts (Eds.), London: Kluwer 
506 |2 openaire  |e Política editorial 
520 3 |a Seasonal primary productivities of periphyton and phytoplankton were compared in Grande Lake (GL) and a relict oxbow lake (ROL) in winter 2006 and summer 2007. GL was free of floating plants on the sampling dates and covered over 80 and 100% of the ROL surface in winter and summer, respectively. The 14C assimilation technique was used to obtain the P-E curves of phytoplankton and periphyton on artificial substrata. The periphytic maximum photosynthetic rate (P max) was higher in the ROL in winter and summer, being better adapted to low irradiances than those in the GL. Phytoplankton and periphytic algae were light-limited in the ROL in summer due to complete coverage by floating macrophytes. In summer, P max and α values for periphyton in the ROL were higher than those for phytoplankton, and were even higher than in GL. In turn, P max and α values for phytoplankton in Grande Lake were higher than those for periphyton due to improved light conditions and the presence of algae that were adapted to movement through the water column. These results suggest that the complete coverage by floating macrophytes restricted phytoplankton productivity and allowed the development of a periphytic community that was better adapted to low-light conditions. © 2012 The Japanese Society of Limnology.  |l eng 
593 |a Laboratorio de Limnología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad de Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina 
651 4 |a SOUTH AMERICA 
690 1 0 |a FLOODPLAIN WETLAND 
690 1 0 |a HUMIC SHALLOW LAKES 
690 1 0 |a PERIPHYTIC ALGAE 
690 1 0 |a PHYTOPLANKTON 
690 1 0 |a PRIMARY PRODUCTION 
690 1 0 |a FLOODPLAIN 
690 1 0 |a HUMIC LAKE 
690 1 0 |a MACROPHYTE 
690 1 0 |a PERIPHYTON 
690 1 0 |a PHOTOSYNTHESIS 
690 1 0 |a PHYTOPLANKTON 
690 1 0 |a PRIMARY PRODUCTION 
690 1 0 |a SHALLOW WATER 
690 1 0 |a WATER COLUMN 
690 1 0 |a ALGAE 
700 1 |a Vera, M.S. 
700 1 |a Pizarro, H. 
773 0 |d 2012  |g v. 13  |h pp. 281-287  |k n. 3  |p Limnology  |x 14398621  |t Limnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869098435&doi=10.1007%2fs10201-012-0373-9&partnerID=40&md5=3426454cca495b273134616ffba72406  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10201-012-0373-9  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14398621_v13_n3_p281_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14398621_v13_n3_p281_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_14398621_v13_n3_p281_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70812