TiO 2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine

Heterogeneous photocatalytic reduction of As(V) and As(III) at different concentrations over TiO 2 under UV light in deoxygenated aqueous suspensions is described. For the first time, As(0) was unambiguously identified together with arsine (AsH3) as reaction products. As(V) reduction requires the pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Levy, I.K
Otros Autores: Mizrahi, M., Ruano, G., Zampieri, G., Requejo, Félix Gregorio, Litter, M.I
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19633caa a22017657a 4500
001 PAPER-9855
003 AR-BaUEN
005 20250908092628.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84857724453 
024 7 |2 cas  |a arsenic, 7440-38-2; arsine, 31219-53-1, 7784-42-1; hydroxyl radical, 3352-57-6; methanol, 67-56-1; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0; Arsenic, 7440-38-2; Arsenicals; Titanium, 7440-32-6; Water Pollutants, Chemical; arsine, 7784-42-1; titanium dioxide, 13463-67-7 
030 |a ESTHA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Levy, I.K. 
245 1 0 |a TiO 2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine 
260 |c 2012 
270 1 0 |m Litter, M.I.; Gerencia Química, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina; email: litter@cnea.gov.ar 
504 |a Litter, M.I., Morgada, M.E., Bundschuh, J., Possible treatments for arsenic removal in Latin American waters for human consumption (2010) Environ. Pollut., 158, pp. 1105-1118 
504 |a Bundschuh, J., Litter, M., Ciminelli, V., Morgada, M.E., Cornejo, L., Garrido Hoyos, S., Hoinkis, J., Bhattacharya, P., Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Iberoamerica-A critical analysis (2010) Water Res., 44, pp. 5828-5845 
504 |a (2004) Guidelines for Drinking Water Quality Recommendations, 1. , 3rd ed. World Health Organization: Geneva 
504 |a Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis (1995) Chem. Rev., 95, pp. 69-96 
504 |a Litter, M.I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems (1999) Applied Catalysis B: Environmental, 23 (2-3), pp. 89-114. , DOI 10.1016/S0926-3373(99)00069-7, PII S0926337399000697 
504 |a Litter, M.I., Treatment of chromium, mercury, lead, uranium and arsenic in water by heterogeneous photocatalysis (2009) Adv. Chem. Eng., 36, pp. 37-67 
504 |a Yang, H., Lin W., -Y., Rajeshwar, K., Homogeneous and heterogeneous photocatalytic reactions involving As(III and As(V) species in aqueous media (1999) J. Photochem. Photobiol., A, 123, pp. 137-143 
504 |a Bissen, M., Vieillard-Baron, M.-M., Schindelin, A.J., Frimmel, F.H., TiO 2-catalyzed photooxidation of arsenite to arsenate in aqueous samples (2001) Chemosphere, 44 (4), pp. 751-757. , DOI 10.1016/S0045-6535(00)00489-6, PII S0045653500004896 
504 |a Lee, H., Choi, W., Photocatalytic oxidation of arsenite in TiO 2 suspension: Kinetics and mechanisms (2002) Environmental Science and Technology, 36 (17), pp. 3872-3878. , DOI 10.1021/es0158197 
504 |a Jayaweera, P.M., Godakumbura, P.I., Pathiratne, K.A.S., Photocatalytic oxidation of As(III) to As(V) in aqueous solutions: A low cost pre-oxidative treatment for total removal of arsenic from water (2003) Current Science, 84 (4), pp. 541-543 
504 |a Ryu, J., Choi, W., Effects of TiO 2 surface modifications on photocatalytic oxidation of arsenite: The role of superoxides (2004) Environmental Science and Technology, 38 (10), pp. 2928-2933 
504 |a Dutta, P.K., Pehkonen, S.O., Sharma, V.K., Ray, A.K., Photocatalytic oxidation of arsenic (III): Evidence of hydroxyl radicals (2005) Environmental Science and Technology, 39 (6), pp. 1827-1834. , DOI 10.1021/es0489238 
504 |a Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott, L., Meng, X., Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide (2005) Water Research, 39 (11), pp. 2327-2337. , DOI 10.1016/j.watres.2005.04.006, PII S004313540500148X 
504 |a Ferguson, M.A., Hoffmann, M.R., Hering, J.G., TiO 2-photocatalyzed As(III) oxidation in aqueous suspensions: Reaction kinetics and effects of adsorption (2005) Environmental Science and Technology, 39 (6), pp. 1880-1886. , DOI 10.1021/es048795n 
504 |a Yoon, S.-H., Lee, J.H., Oxidation mechanism of As(III) in the UV/TiO 2 system: Evidence for a direct hole oxidation mechanism (2005) Environmental Science and Technology, 39 (24), pp. 9695-9701. , DOI 10.1021/es051148r 
504 |a Xu, T., Kamat, P.V., O'Shea, K.E., Mechanistic evaluation of arsenite oxidation in TiO 2 assisted photocatalysis (2005) Journal of Physical Chemistry A, 109 (40), pp. 9070-9075. , DOI 10.1021/jp054021x 
504 |a Zhang, F.-S., Itoh, H., Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO 2 adsorbent (2006) Chemosphere, 65 (1), pp. 125-131. , DOI 10.1016/j.chemosphere.2006.02.027, PII S0045653506001974 
504 |a Ferguson, M.A., Hering, J.G., TiO 2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor (2006) Environmental Science and Technology, 40 (13), pp. 4261-4267. , DOI 10.1021/es0524853 
504 |a Ryu, J., Choi, W., Photocatalytic oxidation of arsenite on TiO 2: Understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors (2006) Environmental Science and Technology, 40 (22), pp. 7034-7039. , DOI 10.1021/es0612403 
504 |a Leng, W.H., Cheng, X.F., Zhang, J.Q., Cao, C.N., Comment on "Photocatalytic oxidation of arsenite on TiO 2: Understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors" [1] (2007) Environmental Science and Technology, 41 (17), pp. 6311-6312. , DOI 10.1021/es070349n 
504 |a Fostier, A.H., Pereira, S.M.S., Rath, S., Guimaraes, J.R., Arsenic removal from water employing heterogeneous photocatalysis with TiO 2 immobilized in PET bottles (2008) Chemosphere, 72, pp. 319-324 
504 |a Yoon, S., Oh, S.-E., Yang, J.E., Yu, S., Pak, D., TiO 2 photocatalytic oxidation mechanism of As(III) (2009) Environ. Sci. Technol., 43, pp. 864-869 
504 |a Li, Q., Easter, N.J., Shang, J.K., As(III removal by palladiummodified nitrogen-doped titanium oxide nanoparticle photocatalyst (2009) Environ. Sci. Technol., 43, pp. 1534-1539 
504 |a Tsimas, E.S., Tyrovola, K., Nikolaos, P., Xekoukoulotakis, N.P., Nikolaidis, N.P., Diamadopoulos, E., Mantzavinos, D., Simultaneous photocatalytic oxidation of As(III and humic acid in aqueous TiO 2 suspensions (2009) J. Hazard. Mater., 169, pp. 376-385 
504 |a Nguyen, T.V., Vigneswaran, S., Ngo, H.H., Kandasamy, J., Choi, H.C., Arsenic removal by photo-catalysis hybrid system (2008) Separation and Purification Technology, 61 (1), pp. 44-50. , DOI 10.1016/j.seppur.2007.09.015, PII S1383586607004261 
504 |a Sharma, V.K., Sohn, M., Aquatic arsenic: Toxicity, speciation, transformations, and remediation (2009) Environ. Int., 35, pp. 743-759 
504 |a Xu, Z., Meng, X., Size effects of nanocrystalline TiO 2 on As(V) and As(III adsorption and As(III photooxidation) (2009) J. Hazard. Mater., 168, pp. 747-752 
504 |a Morgada De Boggio, M.E., Levy, I.K., Mateu, M., Bhattacharya, P., Bundschuh, J., Litter, M.I., Low-cost technologies based on heterogeneous photocatalysis and zerovalent iron for arsenic removal in the Chacopampean plain, Argentina (2010) Natural Arsenic in Groundwater of Latin America-Occurrence, health impact and remediation; Bundschuh, pp. 677-686. , J., Armienta, M. A., Bhattacharya, P., Matschullat, J., Birkle, P., Mukherjee, A. B., Eds.; Balkema Publisher: Lisse 
504 |a Choi, W., Yeo, J., Ryu, J., Tachikawa, T., Majima, T., Photocatalytic oxidation mechanism of As(III on TiO 2: Unique role of As(III as a charge recombinant species (2010) Environ. Sci. Technol., 44, pp. 9099-9104 
504 |a Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, H.N., Pérez-Carrera, A., Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America (2011) Sci. Total Environ., , in press 
504 |a Fei, H., Leng, W., Li, X., Cheng, X., Xu, Y., Zhang, J., Cao, C., Photocatalytic Oxidation of Arsenite over TiO 2: Is superoxide the main oxidant in normal air-saturated aqueous solutionş (2011) Environ. Sci. Technol., 45, pp. 4532-4539 
504 |a Martin, S.T., Herrmann, H., Choi, W., Hoffmann, M.R., Timeresolved microwave conductivity (TRMC 1. TiO 2 photoactivity and size quantization (1994) J. Chem. Soc. Faraday Trans., 90, pp. 3315-3322 
504 |a Wardman, P.J., Reduction potentials of one-electron couples involving free radicals in aqueous solution (1989) Phys. Chem. Ref. Data, 18, pp. 1637-1755 
504 |a Kläning, U.K., Bielski, B.H.J., Sehesteds, K., Arsenic(IV) Pulse-radiolysis study (1989) Inorg. Chem., 28, pp. 2717-2724 
504 |a Lenoble, V., Deluchat, V., Serpaud, B., Bollinger, J.-C., Arsenite oxidation and arsenate determination by the molybdene blue method (2003) Talanta, 61, pp. 267-276 
504 |a Rasmussen, L., Jebjerg Andersen, K., https://docs.google.com/viewer?url=http%3A%2F%2Fwww.who. int%2Fentity%2Fwater_sanitation_health%2Fdwq%2Farsenicun2.pdf, Environmental health and human exposure assessment Chapter 2 World Health Organization in (accessed October 26 2010); Gutzeit, H., (1891) Pharm. Ztg., 36, pp. 748-756 
504 |a (1976) Standard Methods for the Examination of Water and Wastewater, pp. 284-286. , 14th ed.;Rand M. C., Greenberg, A. E., Taras, M. J., Eds.; American Public Health Association, American Water Works Association, Water Pollution Control Federation (APHA-AWWA-WPCF): Washington D.C 
504 |a (1976) Standard Methods for the Examination of Water and Wastewater, pp. 283-284. , 14th ed. Rand M. C., Greenberg, A. E., Taras, M. J., Eds.; American Public Health Association, American Water Works Association, Water Pollution Control Federation (APHA-AWWA-WPCF): Washington D.C 
504 |a Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Mullenberg, G.E., (1978) Handbook of X-Ray Photoelectron Spectroscopy, , Perkin Elmer Corporation: Eden Prairie MN 
504 |a Santhanam, K.S.V., Sundaresan, N.S., (1985) Arsenic Standard Potentials in Aqueous Solutions, pp. 162-172. , Bard, A. J., Parsons, R., Eds.; Marcel Dekker: New York 
504 |a Wilke, M., Farges, F., Petit, P.-E., Brown Jr., G.E., Martin, F., Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study (2001) American Mineralogist, 86 (5-6), pp. 714-730 
504 |a Lamberti, C., Bordiga, S., Bonino, F., Prestipino, C., Berlier, G., Capello, L., D'Acapito, F., Zecchina, A., Determination of the oxidation and coordination state of copper on different Cu-based catalysts by XANES spectroscopy in situ or in operando conditions (2003) Phys. Chem. Chem. Phys., 5, pp. 4502-4509 
504 |a Jegadeesan, G., Al-Abed, S.R., Sundaram, V., Choi, H., Scheckel, K.G., Dionysiou, D.D., Arsenic sorption on TiO 2 nanoparticles: Size and crystallinity effects (2010) Water Res., (44), pp. 965-973 
504 |a Bearden, J.A., Burr, A.F., Reevaluation of X-ray atomic energy levels (1967) Rev. Mod. Phys., 39, pp. 25-142 
504 |a Quinn, R., Mebrahtu, T., Dahl, T.A., Lucrezi, F.A., Toseland, B.A., The role of arsine in the deactivation of methanol synthesis catalysts (2004) Appl. Catal., A, 264, pp. 103-109 
504 |a James-Smith, J., Cauzid, J., Testemale, D., Liu, W., Hazeman, J., Proux, O., Etschmann, B., Brugger, J., Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy (2010) Am. Mineral., (95), pp. 921-932 
504 |a Wang, C., Pagel, R., Bahnemann, D.W., Dohrmann, J.K., Quantum yield of formaldehyde formation in the presence of colloidal TiO 2-based photocatalysts: Effect of intermittent illumination, platinization, and deoxygenation (2004) J. Phys. Chem. B, 108, pp. 14082-14092 
504 |a Zepp, R.G., Hoigne, J., Bader, H., Nitrate-induced photooxidation of trace organic chemicals in water (1987) Environmental Science and Technology, 21 (5), pp. 443-450 
504 |a Moser, J., Punchihewa, S., Infelta, P.P., Gratzel, M., Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates (1991) Langmuir, 7, pp. 3012-3018 
504 |a Daniels, M., The radiation chemistry of arsenite. Part II. Oxygen-free solution (1962) J. Phys. Chem., pp. 1475-1477 
504 |a Muller, J.C., Ferradini, C., Pucheault, J., Radiolyse àtrès haute intensité des solutions dársenite (1972) Radiochem. Radioanal. Letters, 10, pp. 53-58 
504 |a Bejan, D., Bunce, N.J., Electrochemical reduction of As(III and As(V in acidic and basic solutions (2003) J. Appl. Electrochem., 33, pp. 483-489 
504 |a Breitenkamp, M., Henglein, A., Lilie, J., Mechanism of the reduction of lead ions in aqueous solution (a pulse radiolysis study) (1976) Ber. Bunsen-Ges., 80, pp. 973-979 
504 |a Allred, A.L., Hensley Jr., A.L., Electronegativities of nitrogen, phosphorous, arsenic, antimony and bismuth (1961) J. Inorg. Nucl. Chem., 17, pp. 43-54 
504 |a Arango, A.C., Carter, S.A., Brock, P.J., Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO 2 nanoparticles (1999) Applied Physics Letters, 74 (12), pp. 1698-1700 
504 |a Imanishi, A., Tsuji, E., Nakato, Y., Dependence of the work function of TiO 2 (Rutile) on crystal faces, studied by a scanning auger microprobe (2007) Journal of Physical Chemistry C, 111 (5), pp. 2128-2132. , DOI 10.1021/jp0668403 
504 |a Behar, D., Rabani, J., Kinetics of hydrogen production upon reduction of aqueous TiO 2 nanoparticles catalyzed by Pd 0, Pt 0, or Au 0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study (2006) Journal of Physical Chemistry B, 110 (17), pp. 8750-8755. , DOI 10.1021/jp060971m 
504 |a Fernandez-Vega, A., Feliu, J.M., Aldaz, A., Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms (1991) J. Electroanal. Chem., 305, pp. 229-240 
504 |a Laroff, G.P., Fessenden, R.W., Equilibrium and kinetics of the acid dissociation of several hydroxyalkyl radicals (1973) J. Phys. Chem., 77, pp. 1283-1288 
504 |a Simic, M., Neta, P., Hayon, E., Reactions of hydroxyl radicals with unsaturated aliphatic alcohols in aqueous solution. A spectroscopic and electron spin resonance radiolysis study (1973) J. Phys. Chem., 77, pp. 2662-2667 
504 |a Quinn, R., Dahl, T.A., Diamond, B.W., Toseland, B.A., Removal of arsine from synthesis gas using a copper on carbon adsorbent (2006) Industrial and Engineering Chemistry Research, 45 (18), pp. 6272-6278. , DOI 10.1021/ie060176v 
504 |a Seredych, M., Mahle, J., Peterson, G., Bandosz, T.J., Interactions of arsine with nanoporous carbons: Role of heteroatoms in the oxidation process at ambient conditions (2010) J. Phys. Chem. C, 114, pp. 6527-6533 
506 |2 openaire  |e Política editorial 
520 3 |a Heterogeneous photocatalytic reduction of As(V) and As(III) at different concentrations over TiO 2 under UV light in deoxygenated aqueous suspensions is described. For the first time, As(0) was unambiguously identified together with arsine (AsH3) as reaction products. As(V) reduction requires the presence of an electron donor (methanol in the present case) and takes place through the hydroxymethyl radical formed from methanol oxidation by holes or hydroxyl radicals. On the contrary, As(III) reduction takes place through direct reduction by the TiO 2-conduction band electrons. Detailed mechanisms for the photocatalytic processes are proposed. Although reduction to solid As(0) is convenient for purposes of As removal from water as a deposit on TiO 2, attention must be paid to formation of AsH 3, one of the most toxic forms of As, and strategies for AsH3 treatment should be considered. © 2012 American Chemical Society.  |l eng 
593 |a Gerencia Química, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 1428, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Diag. 113 y 64, 1900 La Plata, Argentina 
593 |a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina 
593 |a Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche, Argentina 
593 |a Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de General San Martín, Peatonal Belgrano 3563, 1650 San Martín, Provincia de Buenos Aires, Argentina 
690 1 0 |a AQUEOUS SUSPENSIONS 
690 1 0 |a CONDUCTION BAND ELECTRONS 
690 1 0 |a DIRECT REDUCTION 
690 1 0 |a ELECTRON DONORS 
690 1 0 |a HYDROXYL RADICALS 
690 1 0 |a METHANOL OXIDATION 
690 1 0 |a PHOTOCATALYTIC PROCESS 
690 1 0 |a PHOTOCATALYTIC REDUCTION 
690 1 0 |a TIO 
690 1 0 |a ARSENIC 
690 1 0 |a METHANOL 
690 1 0 |a SUSPENSIONS (FLUIDS) 
690 1 0 |a TITANIUM DIOXIDE 
690 1 0 |a WATER TREATMENT 
690 1 0 |a ARSENIC 
690 1 0 |a ARSINE 
690 1 0 |a HYDROXYL RADICAL 
690 1 0 |a METHANOL 
690 1 0 |a TITANIUM DIOXIDE 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARSENIC 
690 1 0 |a CATALYSIS 
690 1 0 |a CONCENTRATION (COMPOSITION) 
690 1 0 |a ELECTRON 
690 1 0 |a HYDROXYL RADICAL 
690 1 0 |a METHANOL 
690 1 0 |a OXIDATION 
690 1 0 |a PHOTODEGRADATION 
690 1 0 |a POLLUTANT REMOVAL 
690 1 0 |a REDUCTION 
690 1 0 |a TITANIUM 
690 1 0 |a WATER TREATMENT 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a CONCENTRATION (PARAMETERS) 
690 1 0 |a ELECTRON 
690 1 0 |a PHOTOCATALYSIS 
690 1 0 |a REDUCTION 
690 1 0 |a SOLID 
690 1 0 |a ULTRAVIOLET RADIATION 
690 1 0 |a X RAY ABSORPTION SPECTROSCOPY 
690 1 0 |a ARSENIC 
690 1 0 |a ARSENICALS 
690 1 0 |a CATALYSIS 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a PHOTOCHEMICAL PROCESSES 
690 1 0 |a TITANIUM 
690 1 0 |a ULTRAVIOLET RAYS 
690 1 0 |a WATER POLLUTANTS, CHEMICAL 
700 1 |a Mizrahi, M. 
700 1 |a Ruano, G. 
700 1 |a Zampieri, G. 
700 1 |a Requejo, Félix Gregorio 
700 1 |a Litter, M.I. 
773 0 |d 2012  |g v. 46  |h pp. 2299-2308  |k n. 4  |p Environ. Sci. Technol.  |x 0013936X  |w (AR-BaUEN)CENRE-14  |t Environmental Science and Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857724453&doi=10.1021%2fes202638c&partnerID=40&md5=2fe4eedb2b06b44a92299d3e15ca2d59  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/es202638c  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0013936X_v46_n4_p2299_Levy  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0013936X_v46_n4_p2299_Levy  |y Registro en la Biblioteca Digital 
961 |a paper_0013936X_v46_n4_p2299_Levy  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70808