Early olfactory experience induces structural changes in the primary olfactory center of an insect brain

The antennal lobe (AL) is the first olfactory center of the insect brain and is constituted of different functional units, the glomeruli. In the AL, odors are coded as spatiotemporal patterns of glomerular activity. In honeybees, olfactory learning during early adulthood modifies neural activity in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Arenas, A.
Otros Autores: Giurfa, M., Sandoz, J.C, Hourcade, B., Devaud, J.M, Farina, W.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15323caa a22014537a 4500
001 PAPER-9792
003 AR-BaUEN
005 20230518203946.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84857994048 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EJONE 
100 1 |a Arenas, A. 
245 1 0 |a Early olfactory experience induces structural changes in the primary olfactory center of an insect brain 
260 |c 2012 
270 1 0 |m Farina, W.M.; Departamento de Biodiversidad y Biología Experimental, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina; email: walter@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arenas, A., Farina, W.F., Age and rearing environment interact in the retention of early olfactory memories in honey bees (2008) J. Comp. Physiol. A., 194, pp. 629-640 
504 |a Arenas, A., Fernández, V.M., Farina, W.M., Floral odor learning within the hive affects honeybees' foraging decisions (2007) Naturwissenschaften, 94, pp. 218-222 
504 |a Arenas, A., Fernández, V.M., Farina, W.M., Floral scents experienced within the colony affect long-term foraging preferences in honeybees (2008) Apidologie, 39, pp. 714-722 
504 |a Arenas, A., Giurfa, M., Farina, W.M., Sandoz, J.C., Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage (2009) Eur. J. Neurosci., 30, pp. 1498-1508 
504 |a Arenas, A., Fernández, V.M., Farina, W.M., Associative learning during early adulthood enhances later memory retention in honey bees (2009) PLoS ONE, 4, pp. e8046 
504 |a Ashraf, S.I., McLoon, A.L., Sclarsic, S.M., Kunes, S., Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila (2006) Cell, 124, pp. 191-205 
504 |a Barth, M., Heisenberg, M., Vision affects mushroom bodies and central complex in Drosophila melanogaster (1997) Learn. Mem., 4, pp. 219-229 
504 |a Bitterman, M.E., Menzel, R., Fietz, A., Schaefer, S., Classical conditioning of proboscis extension in honey bees (1983) J. Comp. Psychol., 97, p. 107 
504 |a Carman, H.M., Booze, R.M., Mactutus, C.F., Long-term retention of spatial navigation by preweanling rats (2002) Dev. Psychol., 40, pp. 68-77 
504 |a Cummings, D.M., Brunjes, P.C., The effects of variable periods of functional deprivation on olfactory bulb development in rats (1997) Exp. Neurol., 148, pp. 360-366 
504 |a Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J.C., Neural representation of olfactory mixtures in the honey bee antennal lobe (2006) Eur. J. Neurosci., 24, pp. 1161-1174 
504 |a Deisig, N., Giurfa, M., Sandoz, J.C., Antennal lobe processing increases separability of odor mixture representations in the honey bee (2010) J. Neurophysiol., 103, pp. 2185-2194 
504 |a Devaud, J.M., Acebes, A., Ferrús, A., Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila (2001) J. Neurosci., 21, pp. 6274-6282 
504 |a Devaud, J.M., Acebes, A., Ramaswami, M., Ferrús, A., Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age (2003) J. Neurobiol., 56, pp. 13-23 
504 |a Faber, T., Joerges, J., Menzel, R., Associative learning modifies neural representations of odors in the insect brain (1999) Nat. Neurosci., 2, pp. 74-78 
504 |a Farbman, A.I., Brunjes, P.C., Rentfro, L., Michas, J., Ritz, S., The effect of unilateral naris occlusion on cell dynamics in the developing rat olfactory epithelium (1988) J. Neurosci., 8, pp. 3290-3295 
504 |a Galizia, C.G., Nägler, K., Hölldobler, B., Menzel, R., Odour coding is bilaterally symmetrical in the AL of honey bees (Apis mellifera) (1998) Eur. J. Neurosci., 10, pp. 2964-2974 
504 |a Galizia, C.G., Sachse, S., Rappert, A., Menzel, R., The glomerular code for odor representation is species specific in the honey bee Apis mellifera (1999) Nat. Neurosci., 2, pp. 473-478 
504 |a Gascuel, J., Masson, C., Influence of olfactory deprivation on synapse frequency in developing antennal lobe of the honeybee Apis mellifera (1987) Neurosci. Res. Commun., 1, pp. 173-180 
504 |a Giurfa, M., Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well (2007) J. Comp. Physiol. A., 193, pp. 801-824 
504 |a Giurfa, M., Núñez, J., Chittka, L., Menzel, R., Colour preferences of flower-naive honeybees (1995) J. Comp. Physiol. A., 177, pp. 247-259 
504 |a Grünbaum, L., Müller, U., Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee (1998) J. Neurosci., 18, pp. 4384-4392 
504 |a Heisenberg, M., Heusipp, M., Wanke, C., Structural plasticity in the Drosophila brain (1995) J. Neurosci., 15, pp. 1951-1960 
504 |a Hourcade, B., Perisse, E., Devaud, J.M., Sandoz, J.C., Long-term memory shapes the primary olfactory center of an insect brain (2009) Learn. Mem., 16, pp. 607-615 
504 |a Hubel, D.H., Wiesel, T.N., Receptive fields, binocular interaction and functional architecture in the cat's visual cortex (1962) J. Physiol., 160, pp. 106-154 
504 |a Joerges, J., Küttner, A., Galizia, C.G., Menzel, R., Representations of odours and odour mixtures visualized in the honey bee brain (1997) Nature, 387, pp. 285-288 
504 |a Keuroghlian, A.S., Knudsen, E.I., Adaptive auditory plasticity in developing and adult animals (2007) Prog. Neurobiol., 82, pp. 109-121 
504 |a Lindauer, M., Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat (1952) Z. Vgl. Physiol., 34, pp. 299-345 
504 |a Lorenz, K., Der Kumpan in der Umwelt des Vogels (1935) Zeitschrift für Ornithologie, 83, pp. 137-213 
504 |a Manrique, T., Molero, A., Candido, A., Gallo, M., Early learning failure impairs adult learning in rats (2005) Dev. Psychobiol., 46, pp. 340-349 
504 |a Masson, C., Arnold, G., Ontogeny, maturation and plasticity of the olfactory system in the worker bee (1984) J. Insect Physiol., 30, pp. 7-14 
504 |a Masson, C., Arnold, G., Organization and plasticity of the olfactory system of the honey bee, Apis mellifera (1987) Neurobiology and Behavior of Honey Bee, p. 281. , In Menzel, R. & Mercer, A. (Eds), Springer Verlag, Berlin, Heidelberg 
504 |a Menzel, R., Learning in honey bees in an ecological and behavioral context (1985) Experimental Behavioral Ecology and Sociobiology, pp. 55-74. , In Hölldobler, B. & Lindauer, M. (Eds), Gustav Fischer Verlag, New York 
504 |a Menzel, R., Memory dynamics in the honeybee (1999) J. Comp. Physiol. A., 185, pp. 323-340 
504 |a Müller, U., Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees (2000) Neuron, 27, pp. 159-168 
504 |a Phan, M.L., Pytte, C.L., Vicario, D.S., Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1088-1093 
504 |a Quinn, G., Keough, M., (2002) Experimental Design and Data Analysis for Biologists, , Cambridge University Press, Cambridge 
504 |a Rath, L., Galizia, G., Szsyszka, P., Multiple memory traces after associative learning in the honey bee antennal lobe (2011) Eur. J. Neurosci., 34, pp. 352-360 
504 |a Rösch, G.A., Untersuchungen über die Arbeitsteilung im Bienenstaat (1925) Z. Vgl. Physiol., 2, pp. 571-631 
504 |a Sachse, S., Galizia, C.G., The role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study (2002) J. Neurophysiol., 87, pp. 1106-1117 
504 |a Sachse, S., Rappert, A., Galizia, C.G., The spatial representation of chemical structures in the AL of honey bees: steps towards the olfactory code (1999) Eur. J. Neurosci., 11, pp. 3970-3982 
504 |a Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N.K., Ito, K., Vosshall, L.B., Activity-dependent plasticity in an olfactory circuit (2007) Neuron, 56, pp. 838-850 
504 |a Sandoz, J.C., Galizia, C.G., Menzel, R., Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honey bee antennal lobes (2003) Neuroscience, 120, pp. 1137-1148 
504 |a Schäble, S., Poeggel, G., Braun, K., Gruss, M., Long-term consequences of early experience on adult avoidance learning in female rats: role of the dopaminergic system (2007) Neurobiol. Learn. Mem., 87, pp. 109-122 
504 |a Schmidt, U., Eckert, M., The influence of early odour experience on the neural response of the olfactory bulb in laboratory mice (1988) J. Comp. Physiol. A., 163, pp. 771-776 
504 |a Seeley, T.D., Adaptive significance of the age polytheism schedule in honey bee colonies (1982) Behav. Ecol. Sociobiol., 11, pp. 287-293 
504 |a Sokal, R.R., Rohlf, F.J., (1995) Biometry: The Principles and Practice of Statistics in Biological Research, , 3rd Edn. W. H. Freeman and Co., New York 715 
504 |a Stieb, S.M., Hellwig, A., Wehner, R., Rössler, W., Visual experience affects both behavioral and neuronal aspects in the individual life history of the desert ant Cataglyphis fortis (2011) Dev. Neurobiol, , [Epub ahead of print] 
504 |a Strausfeld, N.J., Organization of the honey bee mushroom body: representation of the calyx within the vertical and g lobes (2002) J. Comp. Neurol., 450, pp. 4-33 
504 |a Suh, G.S., Wong, A.M., Hergarden, A.C., Wang, J.W., Simon, A.F., Benzer, S., Axel, R., Anderson, D.J., A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila (2004) Nature, 431, pp. 854-859 
504 |a Takeda, K., Classical conditioned response in the honey bee (1961) J. Insect Physiol., 6, pp. 168-179 
504 |a Winnington, A., Napper, R.M., Mercer, A.R., Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee (1996) J. Comp. Neurol., 365, pp. 479-490 
504 |a Yu, D., Ponomarev, A., Davis, R.L., Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment (2004) Neuron, 42, pp. 437-449 
520 3 |a The antennal lobe (AL) is the first olfactory center of the insect brain and is constituted of different functional units, the glomeruli. In the AL, odors are coded as spatiotemporal patterns of glomerular activity. In honeybees, olfactory learning during early adulthood modifies neural activity in the AL on a long-term scale and also enhances later memory retention. By means of behavioral experiments, we first verified that olfactory learning between the fifth and eighth day of adulthood induces better retention performances at a late adult stage than the same experience acquired before or after this period. We checked that the specificity of memory for the odorants used was improved. We then studied whether such early olfactory learning also induces long-term structural changes in the AL consistent with the formation of long-term olfactory memories. We also measured the volume of 15 identified glomeruli in the ALs of 17-day-old honeybees that either experienced an odor associated with sucrose solution between the fifth and eighth day of adulthood or were left untreated. We found that early olfactory experience induces glomerulus-selective increases in volume that were specific to the learned odor. By comparing our volumetric measures with calcium-imaging recordings from a previous study, performed in 17-day-old bees subjected to the same treatment and experimental conditions, we found that glomeruli that showed structural changes after early learning were those that exhibited a significant increase in neural activity. Our results make evident a correlation between structural and functional changes in the AL following early olfactory learning. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.  |l eng 
593 |a Departamento de Biodiversidad y Biología Experimental, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina 
593 |a IFIBYNE, CONICET,3 Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina 
593 |a UPS, Centre de Recherches sur la Cognition Animale, Université de Toulouse, s118 route de Narbonne, F-31062 Toulouse Cedex 9, France 
593 |a CNRS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France 
593 |a CNRS, Laboratoire Evolution Génomes Spéciation, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette, France 
690 1 0 |a ANTENNAL LOBE 
690 1 0 |a ASSOCIATIVE LEARNING 
690 1 0 |a EARLY EXPERIENCES 
690 1 0 |a HONEYBEE 
690 1 0 |a MEMORY RETRIEVAL 
690 1 0 |a OLFACTION 
690 1 0 |a ANIMAL BEHAVIOR 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ANTENNA (ORGAN) 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ELECTROENCEPHALOGRAM 
690 1 0 |a EXPERIENTIAL LEARNING 
690 1 0 |a EXPERIMENTAL ANIMAL 
690 1 0 |a GLOMERULAR STRUCTURE 
690 1 0 |a HONEYBEE 
690 1 0 |a LONG TERM MEMORY 
690 1 0 |a MEMORY CONSOLIDATION 
690 1 0 |a NONHUMAN 
690 1 0 |a OLFACTORY CORTEX 
690 1 0 |a OLFACTORY MEMORY 
690 1 0 |a OLFACTORY NERVOUS SYSTEM 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a VOLUMETRY 
690 1 0 |a ANIMALS 
690 1 0 |a ANIMALS, NEWBORN 
690 1 0 |a ARTHROPOD ANTENNAE 
690 1 0 |a BEES 
690 1 0 |a BRAIN 
690 1 0 |a INSECTS 
690 1 0 |a LEARNING 
690 1 0 |a ODORS 
690 1 0 |a OLFACTORY PATHWAYS 
690 1 0 |a OLFACTORY PERCEPTION 
700 1 |a Giurfa, M. 
700 1 |a Sandoz, J.C. 
700 1 |a Hourcade, B. 
700 1 |a Devaud, J.M. 
700 1 |a Farina, W.M. 
773 0 |d 2012  |g v. 35  |h pp. 682-690  |k n. 5  |p Eur. J. Neurosci.  |x 0953816X  |w (AR-BaUEN)CENRE-4671  |t European Journal of Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857994048&doi=10.1111%2fj.1460-9568.2012.07999.x&partnerID=40&md5=3d687ae7b85d9177e7462fb6564829bd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1460-9568.2012.07999.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0953816X_v35_n5_p682_Arenas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0953816X_v35_n5_p682_Arenas  |y Registro en la Biblioteca Digital 
961 |a paper_0953816X_v35_n5_p682_Arenas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70745