Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators

The cell wall composition of apples callus cultures showed changes in the presence of 5mgl-1 of three different plant growth regulators (PGRs), namely picloram, abscisic acid and gibberellic acid. Although the structural functions of cell walls do not generally allow for pronounced variations of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alayón-Luaces, P.
Otros Autores: Ponce, N.M.A, Mroginski, L.A, Stortz, C.A, Sozzi, G.O
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17244caa a22014897a 4500
001 PAPER-9752
003 AR-BaUEN
005 20230518203943.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84856660709 
024 7 |2 cas  |a abscisic acid, 21293-29-8; arabinose, 147-81-9; gibberellic acid, 77-06-5; pectin, 9000-69-5; picloram, 1918-02-1; Abscisic Acid, 21293-29-8; Arabinose, 147-81-9; Gibberellins; Monosaccharides; Pectins; Picloram, 1918-02-1; Plant Growth Regulators; Polysaccharides; Uronic Acids; gibberellic acid, BU0A7MWB6L; pectin, 9000-69-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLSCE 
100 1 |a Alayón-Luaces, P. 
245 1 0 |a Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators 
260 |c 2012 
270 1 0 |m Stortz, C.A.; Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428 Buenos Aires, Argentina; email: stortz@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Carpita, N.C., Gibeaut, D.M., Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth (1993) Plant J., 3, pp. 1-30 
504 |a Freshour, G., Clay, R.P., Fuller, M.S., Albersheim, P., Darvill, A.G., Hahn, M.G., Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots (1996) Plant Physiol., 110, pp. 1413-1429 
504 |a Willats, W.G.T., Orfila, C., Limberg, G., Buchholt, H.C., van Alebeek, G.-J.-W.M., Voragen, A.G.J., Marcus, S.E., Knox, J.P., Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties, and cell adhesion (2001) J. Biol. Chem., 276, pp. 9404-19413 
504 |a Scheible, W.-R., Pauly, M., Glycosyltransferases and cell wall biosynthesis: novel players and insights (2004) Curr. Opin. Plant Biol., 7, pp. 285-295 
504 |a Rose, J.K.C., Saladié, M., Catalá, C., The plot thickens: new perspectives of primary cell wall modification (2004) Curr. Opin. Plant Biol., 7, pp. 296-301 
504 |a Meijer, M., Murria, J., Cell cycle controls and the development of plant form (2001) Curr. Opin. Plant Biol., 4, pp. 44-49 
504 |a O'Neill, M.A., Eberhard, S., Albersheim, P., Darvill, A.G., Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth (2001) Science, 294, pp. 846-849 
504 |a Fry, S.C., Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship (1989) Physiol. Plant., 75, pp. 532-536 
504 |a Catalá, C., Rose, J.K.C., Bennett, A.B., Auxin regulation and spatial localization of an endo-1,4-β-d-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls (1997) Plant J., 12, pp. 417-426 
504 |a Hutchison, K.W., Singer, P.B., McInnis, S., Diaz-Sala, C., Greenwood, M.S., Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin (1999) Plant Physiol., 120, pp. 827-831 
504 |a Yeo, U.D., Pandey, D.M., Kim, K.H., Long-term effects of growth regulators on growth and turnover of symplastic and apoplastic sugars in the suspension subculture of kidney bean (2004) J. Plant Biol., 47, pp. 21-26 
504 |a Alayón-Luaces, P., Pagano, E.A., Mroginski, L.A., Sozzi, G.O., Four glycoside hydrolases are differentially modulated by auxins, cytokinins, abscisic acid and gibberellic acid in apple fruit callus cultures (2008) Plant Cell Tiss. Org. Cult., 95, pp. 257-263 
504 |a Alayón-Luaces, P., Pagano, E.A., Mroginski, L.A., Sozzi, G.O., Activity levels of six glycoside hydrolases in apple fruit callus cultures depend on the type and concentration of carbohydrates supplied and the presence of plant growth regulators (2010) Plant Cell Tiss. Org. Cult., 101, pp. 1-10 
504 |a Sozzi, G.O., Greve, L.C., Prody, G.A., Labavitch, J.M., Gibberellic acid, synthetic auxins, and ethylene differentially modulate α-l-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs (2002) Plant Physiol., 129, pp. 1330-1340 
504 |a Rolland, F., Baena-González, E., Sheen, J., Sugars sensing and signaling in plants: conserved and novel mechanisms (2006) Ann. Rev. Plant Biol., 57, pp. 675-709 
504 |a Cohen, J.D., In vitro tomato fruit cultures demonstrate a role for indole-3-acetic acid in regulating fruit ripening (1996) J. Am. Soc. Hortic. Sci., 121, pp. 520-524 
504 |a Ishida, B.K., Baldwin, E.A., Buttery, R.G., Chui, S.H., Ling, L.C., Flavor volatiles, sugars and color development in ripening in vitro-cultured tomato fruit and calyx (1993) Physiol. Plant., 89, pp. 861-867 
504 |a Liu, J.-H., Nada, K., Honda, C., Kitashiba, H., Wen, X.-P., Pang, X.-M., Moriguchi, T., Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response (2006) J. Exp. Bot., 57, pp. 2589-2599 
504 |a Konno, H., Tsumuki, H., Nakashima, S., Characterization of the cell wall matrix polysaccharides and glycoside-hydrolyzing enzymes of Distylium racemosum callus (2010) Plant Sci., 178, pp. 213-220 
504 |a Ponce, N.M.A., Ziegler, V.H., Stortz, C.A., Sozzi, G.O., Compositional changes in cell wall polysaccharides from Japanese plum (Prunus salicina Lindl.) during growth and on-tree ripening (2010) J. Agric. Food Chem., 58, pp. 2562-2570 
504 |a Thorpe, T.A., Meier, D.D., Starch metabolism, respiration and shoot formation in tobacco callus cultures (1972) Physiol. Plant., 27, pp. 365-369 
504 |a Thorpe, T.A., Murashige, T., Some histochemical changes underlying shoot initiation in tobacco callus cultures (1970) Can. J. Bot., 48, pp. 277-285 
504 |a Tanimoto, E., Huber, D.J., Effect of GA3 on the molecular mass of polyuronides in the cell walls of Alaska pea roots (1997) Plant Cell Physiol., 38, pp. 25-35 
504 |a Willats, W.G.T., Steele-King, C.G., Marcus, S.E., Knox, J.P., Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation (1999) Plant J., 20, pp. 619-628 
504 |a Orfila, C., Seymour, G.B., Willats, W.G.T., Huxham, I.M., Jarvis, M.C., Dover, C.J., Thompson, A.J., Knox, J.P., Altered middle lamella homogalacturonan and disrupted deposition of (1→5)-α-l-arabinan in the pericarp of Cnr, a ripening mutant of tomato (2001) Plant Physiol., 126, pp. 210-221 
504 |a Orfila, C., Huisman, M.M.H., Willats, W.G.T., van Alebeek, G.-J.-W.M., Schols, H.A., Seymour, G.B., Knox, J.P., Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening (2002) Planta, 215, pp. 440-447 
504 |a Kikuchi, A., Edashige, Y., Ishii, T., Fujii, T., Satoh, S., Variations in the structure of neutral sugar chains in the pectic polysaccharides of morphologically different carrot calli and correlations with the size of cell clusters (1996) Planta, 198, pp. 634-639 
504 |a Iwai, H., Ishii, T., Satoh, S., Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells (2001) Planta, 213, pp. 907-915 
504 |a Redgwell, R.J., Fischer, M., Kendal, E., MacRae, E.A., Galactose loss and fruit ripening: high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls (1997) Planta, 203, pp. 174-181 
504 |a Brummell, D.A., Dal Cin, V., Crisosto, C.H., Labavitch, J.M., Cell wall metabolism during maturation, ripening and senescence of peach fruit (2004) J. Exp. Bot., 55, pp. 2029-2039 
504 |a Nishitani, K., Masuda, Y., Auxin-induced changes in the cell wall structure: changes in the sugar compositions, intrinsic viscosity and molecular weight distributions of matrix polysaccharides of the epicotyl cell wall of Vigna angularis (1981) Physiol. Plant., 52, pp. 482-494 
504 |a Harpster, M.H., Brummell, D.A., Dunsmuir, P., Suppression of ripening-related endo-1-4-β-glucanase in transgenic pepper fruit does not prevent depolymerization of cell wall polysaccharides during ripening (2002) Plant Mol. Biol., 50, pp. 345-355 
504 |a Brummell, D.A., Labavitch, J.M., Effect of antisense suppression of endopolygalacturonase activity on polyuronide molecular weight in ripening tomato fruit and in fruit homogenates (1997) Plant Physiol., 115, pp. 717-725 
504 |a Huber, D.J., O'Donoghue, E.M., Polyuronides in avocado (Persea americana) and tomato (Lycopersicon esculentum) fruit exhibit markedly different patterns of molecular weight downshifts during ripening (1993) Plant Physiol., 102, pp. 473-480 
504 |a Rose, J.K.C., Hadfield, K.A., Labavitch, J.M., Bennett, A.B., Temporal sequence of cell wall disassembly in rapidly ripening melon fruit (1998) Plant Physiol., 117, pp. 345-361 
504 |a Talbott, L.D., Ray, P.M., Molecular size and separability features of pea cell wall polysaccharides: implications for models of primary wall structure (1992) Plant Physiol., 98, pp. 357-368 
504 |a Nishitani, K., Masuda, Y., Auxin-induced changes in the cell wall xyloglucans: effects of auxin on the two different subfractions of xyloglucans in the epicotyl cell wall of Vigna angularis (1983) Plant Cell Physiol., 24, pp. 345-355 
504 |a Lorences, E.P., Zarra, I., Auxin-induced growth in hypocotyl segments of Pinus pinaster Aiton: changes in molecular weight distribution of hemicellulosic polysaccharides (1987) J. Exp. Bot., 38, pp. 960-967 
504 |a Lorences, E.P., Suárez, L., Zarra, I., Hypocotyl growth of Pinus pinaster seedlings: changes in the molecular weight distribution of hemicellulosic polysaccharides (1987) Physiol. Plant., 69, pp. 466-471 
504 |a Keegstra, K., Talmadge, K.W., Bauer, W.D., Albersheim, P., The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components (1973) Plant Physiol., 51, pp. 188-196 
504 |a Thompson, J.E., Fry, S.C., Evidence of covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells (2000) Planta, 211, pp. 275-278 
504 |a Popper, Z.A., Fry, S.C., Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension cultured Angiosperm cells (2005) Ann. Bot., 96, pp. 91-99 
504 |a Vicente, A.R., Saladié, M., Rose, J.K.C., Labavitch, J.M., The linkage between cell wall metabolism and fruit softening: looking to the future (2007) J. Sci. Food Agric., 87, pp. 1435-1448 
504 |a Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Anal. Chem., 28, pp. 350-356 
504 |a Filisetti-Cozzi, M.C.C., Carpita, N.C., Measurement of uronic acids without interference from neutral sugars (1991) Anal. Biochem., 197, pp. 157-162 
504 |a Ahmed, A.E.R., Labavitch, J.M., A simplified method for accurate determination of cell wall uronide content (1977) J. Food Biochem., 1, pp. 361-365 
504 |a Karkalas, J.J., An improved enzymic method for the determination of native and modified starch (1985) J. Sci. Food Agric., 36, pp. 1019-1027 
504 |a Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol. Plant., 15, pp. 473-497 
504 |a Stevenson, T., Furneaux, R., Chemical methods for the analysis of sulphated galactans from red algae (1991) Carbohydr. Res., 210, pp. 277-298 
520 3 |a The cell wall composition of apples callus cultures showed changes in the presence of 5mgl-1 of three different plant growth regulators (PGRs), namely picloram, abscisic acid and gibberellic acid. Although the structural functions of cell walls do not generally allow for pronounced variations of the total pectin and matrix glycan content, this work provides evidence that the addition of these plant growth regulators can rule, at least partly, cell wall metabolism in apple callus cultures. The chelator- and carbonate-extracts always had the analytical characteristics of pectins, with high proportions of uronic acids, arabinose and galactose as the main monosaccharides, and a significant proportion of rhamnose, but the cross-linking glycan fractions were still rich in RG-I-like material. The application of PGRs produced shifts of uronic acid and neutral sugars between fractions. Arabinose was the neutral sugar exhibiting more variations in apple callus cell wall. Picloram and abscisic acid produced an increase of the uronic acid contents of the cell walls. The AIRs obtained from calluses treated with different PGRs did not show large amounts of high molecular weight products, as determined by size-exclusion chromatography. For the carbonate-extract only the callus treated with picloram displayed two separated peaks for products of different molecular weights. The chromatographic profiles for the 4% KOH-extract displayed two peaks for all the treatments, one very sharp with high molecular weight, and another one wider of smaller molecular weight, whereas the difference between treatments can only be appraised through the areas of the peaks. This is the first report on cell wall composition from fruit calluses supplemented with different PGRs. © 2011 Elsevier Ireland Ltd.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2006-01267 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas , the Universidad de Buenos Aires (UBACyT Program) and the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2006-01267) for financial support. N.M.A.P., L.A.M., C.A.S., and G.O.S are Research Members of the National Research Council of Argentina (CONICET). The authors wish to thank Dr. A.R. Vicente for helpful discussions. 
593 |a Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, W3402 Corrientes, Argentina 
593 |a Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428 Buenos Aires, Argentina 
593 |a CONICET, Av. B. Rivadavia 1917, C1033 Buenos Aires, Argentina 
690 1 0 |a CALLUS CULTURES 
690 1 0 |a CELL WALL 
690 1 0 |a CROSS-LINKING GLYCAN 
690 1 0 |a MALUS DOMESTICA 
690 1 0 |a PECTIN 
690 1 0 |a PLANT GROWTH REGULATORS 
690 1 0 |a ABSCISIC ACID 
690 1 0 |a ARABINOSE 
690 1 0 |a GIBBERELLIC ACID 
690 1 0 |a GIBBERELLIN 
690 1 0 |a MONOSACCHARIDE 
690 1 0 |a PECTIN 
690 1 0 |a PHYTOHORMONE 
690 1 0 |a PICLORAM 
690 1 0 |a POLYSACCHARIDE 
690 1 0 |a URONIC ACID 
690 1 0 |a ARTICLE 
690 1 0 |a CELL WALL 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a CULTURE TECHNIQUE 
690 1 0 |a DRUG EFFECT 
690 1 0 |a FRUIT 
690 1 0 |a MALUS 
690 1 0 |a METABOLISM 
690 1 0 |a ABSCISIC ACID 
690 1 0 |a ARABINOSE 
690 1 0 |a CELL CULTURE TECHNIQUES 
690 1 0 |a CELL WALL 
690 1 0 |a FRUIT 
690 1 0 |a GIBBERELLINS 
690 1 0 |a MALUS 
690 1 0 |a MONOSACCHARIDES 
690 1 0 |a PECTINS 
690 1 0 |a PICLORAM 
690 1 0 |a PLANT GROWTH REGULATORS 
690 1 0 |a POLYSACCHARIDES 
690 1 0 |a URONIC ACIDS 
690 1 0 |a MALUS X DOMESTICA 
700 1 |a Ponce, N.M.A. 
700 1 |a Mroginski, L.A. 
700 1 |a Stortz, C.A. 
700 1 |a Sozzi, G.O. 
773 0 |d 2012  |g v. 185-186  |h pp. 169-175  |p Plant Sci.  |x 01689452  |w (AR-BaUEN)CENRE-6512  |t Plant Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856660709&doi=10.1016%2fj.plantsci.2011.10.008&partnerID=40&md5=18ab797d02e48f351dafc23e3cf1bb6b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.plantsci.2011.10.008  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01689452_v185-186_n_p169_AlayonLuaces  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689452_v185-186_n_p169_AlayonLuaces  |y Registro en la Biblioteca Digital 
961 |a paper_01689452_v185-186_n_p169_AlayonLuaces  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70705