Glycobiology of immune responses
Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthes...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Blackwell Publishing Inc.
2012
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings. © 2012 New York Academy of Sciences. |
|---|---|
| Bibliografía: | Levine, M.J., Reddy, M.S., Tabak, L.A., Structural aspects of salivary glycoproteins (1987) J. Dent. Res., 66, pp. 436-441 Brockhausen, I., Schachter, H., Stanley, P., O-GalNAc Glycans (2009) Essentials of Glycobiology, pp. 115-127. , A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart & M.E. Etzler, Eds.: Cold Spring Harbor Cold Spring Harbor Laboratory Press Stanley, P., Schachter, H., Taniguchi, N., N-Glycans (2009) Essentials of Glycobiology, pp. 101-114. , A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart & M.E. Etzler, Eds.:. Cold Spring Harbor Cold Spring Harbor Laboratory Press Nothaft, H., Szymanski, C.M., Protein glycosylation in bacteria: sweeter than ever (2010) Nat. Rev. Microbiol., 8, pp. 765-778 Theodore, M., Morava, E., Congenital disorders of glycosylation: sweet news (2011) Curr. Opin. Pediatr., 23, pp. 581-587 Van Geet, C., Jaeken, J., Freson, K., Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications (2001) J. Inherit. Metab Dis., 24, pp. 477-492 Wang, Y., Tan, J., Sutton-Smith, M., Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis (2001) Glycobiology, 11, pp. 1051-1070 Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease (2006) Cell, 126, pp. 855-866 Takahashi, M., Kuroki, Y., Ohtsubo, K., Taniguchi, N., Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins (2009) Carbohydr. Res., 344, pp. 1387-1390 Oberg, F., Sjohamn, J., Fischer, G., Glycosylation increases the thermostability of human aquaporin 10 protein (2011) J. Biol. Chem., 286, pp. 31915-31923 Garner, O.B., Baum, L.G., Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling (2008) Biochem. Soc. Trans., 36, pp. 1472-1477 Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation, galectins and cellular signaling (2011) Curr. Opin. Cell. Biol., 23, pp. 383-392 Li, Y., Li, H., Dimasi, N., Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II (2001) Immunity, 14, pp. 93-104 Dai, S., Murphy, G.A., Crawford, F., Crystal structure of HLA-DP2 and implications for chronic beryllium disease (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 7425-7430 Harrison, R.L., Jarvis, D.L., Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins (2006) Adv. Virus Res., 68, pp. 159-191 Blixt, O., Head, S., Mondala, T., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 17033-17038 Comelli, E.M., Head, S.R., Gilmartin, T., A focused microarray approach to functional glycomics: transcriptional regulation of the glycome (2006) Glycobiology, 16, pp. 117-131 Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W., Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation (2001) Nature, 409, pp. 733-739 Ryan, S.O., Bonomo, J.A., Zhao, F., Cobb, B.A., MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation (2011) J. Exp. Med., 208, pp. 1041-1053 Amith, S.R., Jayanth, P., Franchuk, S., Dependence of pathogen molecule-induced toll-like receptor activation and cell function on Neu1 sialidase (2009) Glycoconj. J., 26, pp. 1197-1212 Amith, S.R., Jayanth, P., Franchuk, S., Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling (2010) Cell Signal., 22, pp. 314-324 van Kooyk, Y., Geijtenbeek, T.B., DC-SIGN: escape mechanism for pathogens (2003) Nat. Rev. Immunol., 3, pp. 697-709 Andersson, K.B., Draves, K.E., Magaletti, D.M., Characterization of the expression and gene promoter of CD22 in murine B cells (1996) Eur. J. Immunol., 26, pp. 3170-3178 O'Reilly, M.K., Tian, H., Paulson, J.C., CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells (2011) J. Immunol., 186, pp. 1554-1563 Liu, F.T., Rabinovich, G.A., Galectins: regulators of acute and chronic inflammation (2010) Ann. N. Y. Acad. Sci., 1183, pp. 158-182 Anthony, R.M., Kobayashi, T., Wermeling, F., Ravetch, J.V., Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway (2011) Nature, 475, pp. 110-113 Kaneko, Y., Nimmerjahn, F., Ravetch, J.V., Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation (2006) Science, 313, pp. 670-673 Matsushita, M., Ficolins: complement-activating lectins involved in innate immunity (2010) J. Innate. Immun., 2, pp. 24-32 Stanley, P., Okajima, T., Roles of glycosylation in Notch signaling (2010) Curr. Top. Dev. Biol., 92, pp. 131-164 Lowe, J.B., Glycan-dependent leukocyte adhesion and recruitment in inflammation (2003) Curr. Opin. Cell Biol., 15, pp. 531-538 Mitoma, J., Bao, X., Petryanik, B., Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment (2007) Nat. Immunol., 8, pp. 409-418 Pashov, A., Garimalla, S., Monzavi-Karbassi, B., Kieber-Emmons, T., Carbohydrate targets in HIV vaccine research: lessons from failures (2009) Immunotherapy, 1, pp. 777-794 Krinos, C.M., Coyne, M.J., Weinacht, K.G., Extensive surface diversity of a commensal microorganism by multiple DNA inversions (2001) Nature, 414, pp. 555-558 Carlin, A.F., Lewis, A.L., Varki, A., Nizet, V., Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes (2007) J. Bacteriol., 189, pp. 1231-1237 van Kooyk, Y., Rabinovich, G.A., Protein-glycan interactions in the control of innate and adaptive immune responses (2008) Nat. Immunol., 9, pp. 593-601 Drickamer, K., C-type lectin-like domains (1999) Curr. Opin. Struct. Biol., 9, pp. 585-590 Figdor, C.G., van Kooyk, Y., Adema, G.J., C-type lectin receptors on dendritic cells and Langerhans cells (2002) Nat. Rev. Immunol., 2, pp. 77-84 Kawasaki, T., Li, M., Kozutsumi, Y., Yamashina, I., Isolation and characterization of a receptor lectin specific for galactose/N-acetylgalactosamine from macrophages (1986) Carbohydr. Res., 151, pp. 197-206 van Vliet, S.J., Saeland, E., van Kooyk, Y., Sweet preferences of MGL:carbohydrate specificity and function (2008) Trends Immunol., 29, pp. 83-90 Zelensky, A.N., Gready, J.E., The C-type lectin-like domain superfamily (2005) FEBS J., 272, pp. 6179-6217 Engering, A., Geijtenbeek, T.B., van Vliet, S.J., The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells (2002) J. Immunol., 168, pp. 2118-2126 Unger, W.W.J., van Kooyk, Y., Dressed for success; C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells (2011) Curr. Opin Immunol., 23, pp. 131-137 Birkholz, K., Schwenkert, M., Kellner, C., Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation (2010) Blood, 116, pp. 2277-2285 Singh, S.K., Stephani, J., Schaefer, M., Targeting of glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation (2009) Mol. Immunol., 47, pp. 164-174 Idoyaga, J., Cheong, C., Suda, K., Langerin/CD207 receptor on dendritic cells mediates efficiënt antigen presentation of non MHC I and II products in vivo (2008) J. Immunol., 180, pp. 3647-3650 Bozzacco, L., Trumpfheller, C., Siegal, F.P., DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 1289-1294 Sancho, D., Mourao-Sa, D., Joffre, O.P., Tumor therapy in mice via antigen targeting to a novel DC restricted C-type lectin (2008) J. Clin. Invest., 118, pp. 2098-2110 Osorio, F., Reis e Sousa, C., Myeloid C-type lectin receptors in pathogen recognition and host defense (2011) Immunity, 34, pp. 651-664 Park, C.G., Takahara, K., Umemoto, E., Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN (2001) Int. Immunol., 13, pp. 1283-1290 Singh, S.K., Streng-Ouwehand, I., Litjens, M., Characterization of murine MGL 1 and MGL 2 C-type lectins: Distinct glycan specificities and tumor binding properties (2009) Mol. immunol., 46, pp. 1240-1249 Denda-Nagai, K., Aida, S., Saba, K., Distribution and function of macrophage galactose-type C-type lectin 2 (MGL2/CD301b): efficient uptake and presentation of glycosylated antigens by dendritic cells (2010) J. Biol. Chem., 285, pp. 19193-19204 Brown, G.D., Dectin-1: a signaling non-TLR pattern-recognition receptor (2006) Nat. Rev. Immunol., 6, pp. 33-43 Van Die, I., Cummings, R.D., Glycan mimmickry by parasitic helminths: a strategy for modulating the host immune response? (2010) Glycobiology, 20, pp. 2-12 Gow, N.A.R., van de Veerdonk, F.L., Brown, A.J.P., Netea, M.G., Candida albicans morphogenesis and host defense: discriminating invasion from colonization (2012) Nat. Rev. Microbiol., 10, pp. 112-122 Aarnoudse, C.A., Bax, M., Sánchez-Hernández, M., Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells (2008) Int. J. Cancer, 122, pp. 839-846 Gringhuis, S.I., van Dunnen, J., Litjens, M., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB (2007) Immunity, 26, pp. 605-616 Gringhuis, S.I., den Dunnen, J., Litjens, M., Carbohydrate-specific signalling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori (2009) Nat. Immunol., 10, pp. 1081-1088 Geijtenbeek, T.B., Gringhuis, S.I., Signalling through C-type lectin receptors: shaping immune responses (2009) Nat. Rev. Immunol., 9, pp. 465-479 Geijtenbeek, T.B.H., van Vliet, S.J., Engering, A., Self- and non-self recognition by C-type lectins on dendritic cells (2003) Ann. Rev. Immunol., 22, pp. 33-54 Dam, T.K., Brewer, C.F., Lectins as pattern recognition molecules: the effects of epitope density in innate immunity (2010) Glycobiology, 20, pp. 270-279 van Gisbergen, K.P.J.M., Aarnoudse, C.A., Meijer, G.A., Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (2005) Cancer Res., 65, pp. 5935-5943 Saeland, E., van Vliet, S.J., Bäckström, M., The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma (2007) Cancer Immunol. Immunother., 56, pp. 1225-1236 Geijtenbeek, T.B.H., Kwon, D.S., Torensma, R., DC-SIGN, a dendritic cell specific HIV-1 binding protein that enhances trans-infection of T cells (2000) Cell, 100, pp. 587-597 de Witte, L., Nabatov, A., Prion, M., Langerin is a natural barrier to HIV-1 transmission by Langerhans cells (2007) Nat. Med., 13, pp. 367-371 Lambert, A.A., Gilbert, C., Richard, M., The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways (2008) Blood, 112, pp. 1299-1307 Garcia-Vallejo, J.J., van Kooyk, Y., Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostatis (2009) Immunol. Rev., 230, pp. 22-37 van Gisbergen, K.P.J.M., Sanchez-Hernandez, M., Geijtenbeek, T.B., van Kooyk, Y., Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN (2005) J. Exp. Med., 201, pp. 1281-1292 van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B., van Kooyk, Y., Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45 (2006) Nat. Immunol., 24, pp. 1200-1208 Crocker, P.R., Paulson, J.C., Varki, A., Siglecs and their roles in the immune system (2007) Nat. Rev. Immunol., 7, pp. 255-266 O'Reilly, M.K., Paulson, J.C., Siglecs as targets for therapy in immune-cell-mediated disease (2009) Trends Pharmacol. Sci., 30, pp. 240-248 Angata, T., Varki, A., Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective (2002) Chem. Rev., 102, pp. 439-469 Avril, T., Wagner, E.R., Willison, H.J., Crocker, P.R., Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides (2006) Infect. Immun., 74, pp. 4133-4141 Paul, S.P., Taylor, L.S., Stansbury, E.K., McVicar, D.W., Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2 (2000) Blood, 96, pp. 483-490 Liu, Y., Chen, G.Y., Zheng, P., CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns (2009) Trends Immunol., 30, pp. 557-561 Blasius, A.L., Colonna, M., Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H (2006) Trends Immunol., 27, pp. 255-260 Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation (2009) Nat. Rev. Immunol., 9, pp. 338-352 Di Lella, S., Sundblad, V., Cerliani, J.P., When galectins recognize glycans: from biochemistry to physiology and back again (2011) Biochemistry, 50, pp. 7842-7857 Sato, S., St-Pierre, C., Bhaumik, P., Nieminen, J., Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs) (2009) Immunol. Rev., 230, pp. 172-187 Brewer, C.F., Miceli, M.C., Baum, L.G., Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions (2002) Curr. Opin. Struct. Biol., 12, pp. 616-623 Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol., 8, pp. 825-834 Zhu, C., Anderson, A.C., Schubart, A., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat. Immunol., 6, pp. 1245-1252 Cooper, D., Ilarregui, J.M., Pesoa, S.A., Multiple functional targets of the immunoregulatory activity of galectin-1: control of immune cell trafficking, dendritic cell physiology, and T-cell fate (2010) Methods Enzymol., 480, pp. 199-244 Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis (2009) J. Immunol., 182, pp. 1167-1173 Forsman, H., Islander, U., Andréasson, E., Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis (2011) Arthritis Rheum., 63, pp. 445-454 Dube, D.H., Bertozzi, C.R., Glycans in cancer and inflammation-potential for therapeutics and diagnostics (2005) Nat. Rev. Drug Discov., 4, pp. 477-488 Sperandio, M., Gleissner, C.A., Ley, K., Glycosylation in immune cell trafficking (2009) Immunol. Rev., 230, pp. 97-113 Buzás, E.I., György, B., Pásztói, M., Carbohydrate recognition systems in autoimmunity (2006) Autoimmunity, 39, pp. 691-704 Grigorian, A., Araujo, L., Naidu, N.N., N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis (2011) J. Biol. Chem., 286, pp. 40133-40141 Green, R.S., Stone, E.L., Tenno, M., Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis (2007) Immunity, 27, pp. 308-320 Hiki, Y., Odani, H., Takahashi, M., Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy (2001) Kidney Int., 59, pp. 1077-1085 Padler-Karavani, V., Yu, H., Cao, H., Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease (2008) Glycobiology, 18, pp. 818-830 Ju, T., Cummings, R.D., Protein glycosylation: chaperone mutation in Tn syndrome (2005) Nature, 437, p. 1252 Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991 Kel, J., Oldenampsen, J., Luca, M., Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis (2007) Am. J. Pathol., 170, pp. 272-280 Zhou, Y., Kawasaki, H., Hsu, S.C., Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1 (2010) Nat. Med., 16, pp. 1128-1133 Jellusova, J., Wellmann, U., Amann, K., CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity (2010) J. Immunol., 184, pp. 3618-3627 Saeland, E., Belo, A.I., Mongera, S., Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients (2011) Int. J. Cancer, , Aug 5. doi:. [Epub ahead of print] Bozzacco, L., Trumpfheller, C., Huang, Y., HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine DC (2010) Eur. J. Immunol., 40, pp. 36-46 Klechevsky, E., Flamar, A.L., Cao, Y., Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR (2010) Blood, 116, pp. 1685-1697 Singh, S.K., Streng-Ouwehand, I., Litjens, M., Design of neo-glycoconjugates that target the Mannose Receptor and enhance TLR independent cross-presentation and Th1 polarization (2011) Eur. J. Immunol., 41, pp. 916-925 Burgdorf, S., Lukacs-Kornek, V., Kurtc, C., The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation (2006) J. Immunol., 176, pp. 6770-6776 Caminischi, I., Proietto, A.I., Ahmet, F., The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement (2008) Blood, 112, pp. 3264-3273 Sánchez-Navarro, M., Rojo, J., Targeting DC-SIGN with carbohydrate multivalent systems (2010) Drug News Perspect, 23, pp. 557-572 Streng-Ouwehand, I., Unger, W.W.J., van Kooyk, Y., C-type lectin receptors for tumor eradication: future directions (2011) Cancers, , 3: 3169-3188 Salatino, M., Rabinovich, G.A., Fine-tuning antitumor responses through the control of galectin-glycan interactions: an overview (2011) Methods Mol. Biol., 677, pp. 355-374 Rubinstein, N., Alvarez, M., Zwirner, N.W., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251 Cedeno-Laurent, F., Opperman, M.J., Barthel, S.R., Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity (2012) J. Invest. Dermatol, 132, pp. 410-420 Juszczynski, P., Ouyang, J., Monti, S., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 13134-13139 Banh, A., Zhang, J., Cao, H., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71, pp. 4423-4431 Kuo, P.L., Hung, J.Y., Huang, S.K., Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway (2011) J. Immunol., 186, pp. 1521-1530 Tang, D., Yuan, Z., Xue, X., High expression of galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer (2011) Int. J. Cancer., , doi:. [Epub ahead of print Soldati, R., Berger, E., Zenclussen, A.C., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2011) Int. J. Cancer., , doi:. [Epub ahead of print Dardalhon, V., Anderson, A.C., Karman, J., Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells (2010) J. Immunol., 185, pp. 1383-1392 Demotte, N., Wieërs, G., Van Der Smissen, P., A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice (2010) Cancer Res., 70, pp. 7476-7748 Tsuboi, S., Sutoh, M., Hatakeyama, S., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J., 30, pp. 3173-3185 Nicoll, G., Avril, T., Lock, K., Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms (2003) Eur. J. Immunol., 33, pp. 1642-1648 Ohta, M., Ishida, A., Toda, M., Immunomodulation of monocyte-derived dendritic cells through ligation of tumor-produced mucins to Siglec-9 (2010) Biochem. Biophys. Res. Commun., 402, pp. 663-669 |
| ISSN: | 00778923 |
| DOI: | 10.1111/j.1749-6632.2012.06492.x |