Glycobiology of immune responses

Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthes...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rabinovich, G.A
Otros Autores: van Kooyk, Y., Cobb, B.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Inc. 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 27518caa a22021617a 4500
001 PAPER-9727
003 AR-BaUEN
005 20230607131854.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84860252480 
024 7 |2 cas  |a lipid, 66455-18-3 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ANYAA 
100 1 |a Rabinovich, G.A. 
245 1 0 |a Glycobiology of immune responses 
260 |b Blackwell Publishing Inc.  |c 2012 
270 1 0 |m Rabinovich, G.A.; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Argentina; email: gabyrabi@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Levine, M.J., Reddy, M.S., Tabak, L.A., Structural aspects of salivary glycoproteins (1987) J. Dent. Res., 66, pp. 436-441 
504 |a Brockhausen, I., Schachter, H., Stanley, P., O-GalNAc Glycans (2009) Essentials of Glycobiology, pp. 115-127. , A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart & M.E. Etzler, Eds.: Cold Spring Harbor Cold Spring Harbor Laboratory Press 
504 |a Stanley, P., Schachter, H., Taniguchi, N., N-Glycans (2009) Essentials of Glycobiology, pp. 101-114. , A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart & M.E. Etzler, Eds.:. Cold Spring Harbor Cold Spring Harbor Laboratory Press 
504 |a Nothaft, H., Szymanski, C.M., Protein glycosylation in bacteria: sweeter than ever (2010) Nat. Rev. Microbiol., 8, pp. 765-778 
504 |a Theodore, M., Morava, E., Congenital disorders of glycosylation: sweet news (2011) Curr. Opin. Pediatr., 23, pp. 581-587 
504 |a Van Geet, C., Jaeken, J., Freson, K., Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications (2001) J. Inherit. Metab Dis., 24, pp. 477-492 
504 |a Wang, Y., Tan, J., Sutton-Smith, M., Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis (2001) Glycobiology, 11, pp. 1051-1070 
504 |a Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease (2006) Cell, 126, pp. 855-866 
504 |a Takahashi, M., Kuroki, Y., Ohtsubo, K., Taniguchi, N., Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins (2009) Carbohydr. Res., 344, pp. 1387-1390 
504 |a Oberg, F., Sjohamn, J., Fischer, G., Glycosylation increases the thermostability of human aquaporin 10 protein (2011) J. Biol. Chem., 286, pp. 31915-31923 
504 |a Garner, O.B., Baum, L.G., Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling (2008) Biochem. Soc. Trans., 36, pp. 1472-1477 
504 |a Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation, galectins and cellular signaling (2011) Curr. Opin. Cell. Biol., 23, pp. 383-392 
504 |a Li, Y., Li, H., Dimasi, N., Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II (2001) Immunity, 14, pp. 93-104 
504 |a Dai, S., Murphy, G.A., Crawford, F., Crystal structure of HLA-DP2 and implications for chronic beryllium disease (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 7425-7430 
504 |a Harrison, R.L., Jarvis, D.L., Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins (2006) Adv. Virus Res., 68, pp. 159-191 
504 |a Blixt, O., Head, S., Mondala, T., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 17033-17038 
504 |a Comelli, E.M., Head, S.R., Gilmartin, T., A focused microarray approach to functional glycomics: transcriptional regulation of the glycome (2006) Glycobiology, 16, pp. 117-131 
504 |a Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W., Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation (2001) Nature, 409, pp. 733-739 
504 |a Ryan, S.O., Bonomo, J.A., Zhao, F., Cobb, B.A., MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation (2011) J. Exp. Med., 208, pp. 1041-1053 
504 |a Amith, S.R., Jayanth, P., Franchuk, S., Dependence of pathogen molecule-induced toll-like receptor activation and cell function on Neu1 sialidase (2009) Glycoconj. J., 26, pp. 1197-1212 
504 |a Amith, S.R., Jayanth, P., Franchuk, S., Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling (2010) Cell Signal., 22, pp. 314-324 
504 |a van Kooyk, Y., Geijtenbeek, T.B., DC-SIGN: escape mechanism for pathogens (2003) Nat. Rev. Immunol., 3, pp. 697-709 
504 |a Andersson, K.B., Draves, K.E., Magaletti, D.M., Characterization of the expression and gene promoter of CD22 in murine B cells (1996) Eur. J. Immunol., 26, pp. 3170-3178 
504 |a O'Reilly, M.K., Tian, H., Paulson, J.C., CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells (2011) J. Immunol., 186, pp. 1554-1563 
504 |a Liu, F.T., Rabinovich, G.A., Galectins: regulators of acute and chronic inflammation (2010) Ann. N. Y. Acad. Sci., 1183, pp. 158-182 
504 |a Anthony, R.M., Kobayashi, T., Wermeling, F., Ravetch, J.V., Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway (2011) Nature, 475, pp. 110-113 
504 |a Kaneko, Y., Nimmerjahn, F., Ravetch, J.V., Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation (2006) Science, 313, pp. 670-673 
504 |a Matsushita, M., Ficolins: complement-activating lectins involved in innate immunity (2010) J. Innate. Immun., 2, pp. 24-32 
504 |a Stanley, P., Okajima, T., Roles of glycosylation in Notch signaling (2010) Curr. Top. Dev. Biol., 92, pp. 131-164 
504 |a Lowe, J.B., Glycan-dependent leukocyte adhesion and recruitment in inflammation (2003) Curr. Opin. Cell Biol., 15, pp. 531-538 
504 |a Mitoma, J., Bao, X., Petryanik, B., Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment (2007) Nat. Immunol., 8, pp. 409-418 
504 |a Pashov, A., Garimalla, S., Monzavi-Karbassi, B., Kieber-Emmons, T., Carbohydrate targets in HIV vaccine research: lessons from failures (2009) Immunotherapy, 1, pp. 777-794 
504 |a Krinos, C.M., Coyne, M.J., Weinacht, K.G., Extensive surface diversity of a commensal microorganism by multiple DNA inversions (2001) Nature, 414, pp. 555-558 
504 |a Carlin, A.F., Lewis, A.L., Varki, A., Nizet, V., Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes (2007) J. Bacteriol., 189, pp. 1231-1237 
504 |a van Kooyk, Y., Rabinovich, G.A., Protein-glycan interactions in the control of innate and adaptive immune responses (2008) Nat. Immunol., 9, pp. 593-601 
504 |a Drickamer, K., C-type lectin-like domains (1999) Curr. Opin. Struct. Biol., 9, pp. 585-590 
504 |a Figdor, C.G., van Kooyk, Y., Adema, G.J., C-type lectin receptors on dendritic cells and Langerhans cells (2002) Nat. Rev. Immunol., 2, pp. 77-84 
504 |a Kawasaki, T., Li, M., Kozutsumi, Y., Yamashina, I., Isolation and characterization of a receptor lectin specific for galactose/N-acetylgalactosamine from macrophages (1986) Carbohydr. Res., 151, pp. 197-206 
504 |a van Vliet, S.J., Saeland, E., van Kooyk, Y., Sweet preferences of MGL:carbohydrate specificity and function (2008) Trends Immunol., 29, pp. 83-90 
504 |a Zelensky, A.N., Gready, J.E., The C-type lectin-like domain superfamily (2005) FEBS J., 272, pp. 6179-6217 
504 |a Engering, A., Geijtenbeek, T.B., van Vliet, S.J., The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells (2002) J. Immunol., 168, pp. 2118-2126 
504 |a Unger, W.W.J., van Kooyk, Y., Dressed for success; C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells (2011) Curr. Opin Immunol., 23, pp. 131-137 
504 |a Birkholz, K., Schwenkert, M., Kellner, C., Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation (2010) Blood, 116, pp. 2277-2285 
504 |a Singh, S.K., Stephani, J., Schaefer, M., Targeting of glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation (2009) Mol. Immunol., 47, pp. 164-174 
504 |a Idoyaga, J., Cheong, C., Suda, K., Langerin/CD207 receptor on dendritic cells mediates efficiënt antigen presentation of non MHC I and II products in vivo (2008) J. Immunol., 180, pp. 3647-3650 
504 |a Bozzacco, L., Trumpfheller, C., Siegal, F.P., DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 1289-1294 
504 |a Sancho, D., Mourao-Sa, D., Joffre, O.P., Tumor therapy in mice via antigen targeting to a novel DC restricted C-type lectin (2008) J. Clin. Invest., 118, pp. 2098-2110 
504 |a Osorio, F., Reis e Sousa, C., Myeloid C-type lectin receptors in pathogen recognition and host defense (2011) Immunity, 34, pp. 651-664 
504 |a Park, C.G., Takahara, K., Umemoto, E., Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN (2001) Int. Immunol., 13, pp. 1283-1290 
504 |a Singh, S.K., Streng-Ouwehand, I., Litjens, M., Characterization of murine MGL 1 and MGL 2 C-type lectins: Distinct glycan specificities and tumor binding properties (2009) Mol. immunol., 46, pp. 1240-1249 
504 |a Denda-Nagai, K., Aida, S., Saba, K., Distribution and function of macrophage galactose-type C-type lectin 2 (MGL2/CD301b): efficient uptake and presentation of glycosylated antigens by dendritic cells (2010) J. Biol. Chem., 285, pp. 19193-19204 
504 |a Brown, G.D., Dectin-1: a signaling non-TLR pattern-recognition receptor (2006) Nat. Rev. Immunol., 6, pp. 33-43 
504 |a Van Die, I., Cummings, R.D., Glycan mimmickry by parasitic helminths: a strategy for modulating the host immune response? (2010) Glycobiology, 20, pp. 2-12 
504 |a Gow, N.A.R., van de Veerdonk, F.L., Brown, A.J.P., Netea, M.G., Candida albicans morphogenesis and host defense: discriminating invasion from colonization (2012) Nat. Rev. Microbiol., 10, pp. 112-122 
504 |a Aarnoudse, C.A., Bax, M., Sánchez-Hernández, M., Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells (2008) Int. J. Cancer, 122, pp. 839-846 
504 |a Gringhuis, S.I., van Dunnen, J., Litjens, M., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB (2007) Immunity, 26, pp. 605-616 
504 |a Gringhuis, S.I., den Dunnen, J., Litjens, M., Carbohydrate-specific signalling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori (2009) Nat. Immunol., 10, pp. 1081-1088 
504 |a Geijtenbeek, T.B., Gringhuis, S.I., Signalling through C-type lectin receptors: shaping immune responses (2009) Nat. Rev. Immunol., 9, pp. 465-479 
504 |a Geijtenbeek, T.B.H., van Vliet, S.J., Engering, A., Self- and non-self recognition by C-type lectins on dendritic cells (2003) Ann. Rev. Immunol., 22, pp. 33-54 
504 |a Dam, T.K., Brewer, C.F., Lectins as pattern recognition molecules: the effects of epitope density in innate immunity (2010) Glycobiology, 20, pp. 270-279 
504 |a van Gisbergen, K.P.J.M., Aarnoudse, C.A., Meijer, G.A., Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (2005) Cancer Res., 65, pp. 5935-5943 
504 |a Saeland, E., van Vliet, S.J., Bäckström, M., The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma (2007) Cancer Immunol. Immunother., 56, pp. 1225-1236 
504 |a Geijtenbeek, T.B.H., Kwon, D.S., Torensma, R., DC-SIGN, a dendritic cell specific HIV-1 binding protein that enhances trans-infection of T cells (2000) Cell, 100, pp. 587-597 
504 |a de Witte, L., Nabatov, A., Prion, M., Langerin is a natural barrier to HIV-1 transmission by Langerhans cells (2007) Nat. Med., 13, pp. 367-371 
504 |a Lambert, A.A., Gilbert, C., Richard, M., The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways (2008) Blood, 112, pp. 1299-1307 
504 |a Garcia-Vallejo, J.J., van Kooyk, Y., Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostatis (2009) Immunol. Rev., 230, pp. 22-37 
504 |a van Gisbergen, K.P.J.M., Sanchez-Hernandez, M., Geijtenbeek, T.B., van Kooyk, Y., Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN (2005) J. Exp. Med., 201, pp. 1281-1292 
504 |a van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B., van Kooyk, Y., Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45 (2006) Nat. Immunol., 24, pp. 1200-1208 
504 |a Crocker, P.R., Paulson, J.C., Varki, A., Siglecs and their roles in the immune system (2007) Nat. Rev. Immunol., 7, pp. 255-266 
504 |a O'Reilly, M.K., Paulson, J.C., Siglecs as targets for therapy in immune-cell-mediated disease (2009) Trends Pharmacol. Sci., 30, pp. 240-248 
504 |a Angata, T., Varki, A., Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective (2002) Chem. Rev., 102, pp. 439-469 
504 |a Avril, T., Wagner, E.R., Willison, H.J., Crocker, P.R., Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides (2006) Infect. Immun., 74, pp. 4133-4141 
504 |a Paul, S.P., Taylor, L.S., Stansbury, E.K., McVicar, D.W., Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2 (2000) Blood, 96, pp. 483-490 
504 |a Liu, Y., Chen, G.Y., Zheng, P., CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns (2009) Trends Immunol., 30, pp. 557-561 
504 |a Blasius, A.L., Colonna, M., Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H (2006) Trends Immunol., 27, pp. 255-260 
504 |a Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation (2009) Nat. Rev. Immunol., 9, pp. 338-352 
504 |a Di Lella, S., Sundblad, V., Cerliani, J.P., When galectins recognize glycans: from biochemistry to physiology and back again (2011) Biochemistry, 50, pp. 7842-7857 
504 |a Sato, S., St-Pierre, C., Bhaumik, P., Nieminen, J., Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs) (2009) Immunol. Rev., 230, pp. 172-187 
504 |a Brewer, C.F., Miceli, M.C., Baum, L.G., Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions (2002) Curr. Opin. Struct. Biol., 12, pp. 616-623 
504 |a Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol., 8, pp. 825-834 
504 |a Zhu, C., Anderson, A.C., Schubart, A., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat. Immunol., 6, pp. 1245-1252 
504 |a Cooper, D., Ilarregui, J.M., Pesoa, S.A., Multiple functional targets of the immunoregulatory activity of galectin-1: control of immune cell trafficking, dendritic cell physiology, and T-cell fate (2010) Methods Enzymol., 480, pp. 199-244 
504 |a Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis (2009) J. Immunol., 182, pp. 1167-1173 
504 |a Forsman, H., Islander, U., Andréasson, E., Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis (2011) Arthritis Rheum., 63, pp. 445-454 
504 |a Dube, D.H., Bertozzi, C.R., Glycans in cancer and inflammation-potential for therapeutics and diagnostics (2005) Nat. Rev. Drug Discov., 4, pp. 477-488 
504 |a Sperandio, M., Gleissner, C.A., Ley, K., Glycosylation in immune cell trafficking (2009) Immunol. Rev., 230, pp. 97-113 
504 |a Buzás, E.I., György, B., Pásztói, M., Carbohydrate recognition systems in autoimmunity (2006) Autoimmunity, 39, pp. 691-704 
504 |a Grigorian, A., Araujo, L., Naidu, N.N., N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis (2011) J. Biol. Chem., 286, pp. 40133-40141 
504 |a Green, R.S., Stone, E.L., Tenno, M., Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis (2007) Immunity, 27, pp. 308-320 
504 |a Hiki, Y., Odani, H., Takahashi, M., Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy (2001) Kidney Int., 59, pp. 1077-1085 
504 |a Padler-Karavani, V., Yu, H., Cao, H., Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease (2008) Glycobiology, 18, pp. 818-830 
504 |a Ju, T., Cummings, R.D., Protein glycosylation: chaperone mutation in Tn syndrome (2005) Nature, 437, p. 1252 
504 |a Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991 
504 |a Kel, J., Oldenampsen, J., Luca, M., Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis (2007) Am. J. Pathol., 170, pp. 272-280 
504 |a Zhou, Y., Kawasaki, H., Hsu, S.C., Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1 (2010) Nat. Med., 16, pp. 1128-1133 
504 |a Jellusova, J., Wellmann, U., Amann, K., CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity (2010) J. Immunol., 184, pp. 3618-3627 
504 |a Saeland, E., Belo, A.I., Mongera, S., Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients (2011) Int. J. Cancer, , Aug 5. doi:. [Epub ahead of print] 
504 |a Bozzacco, L., Trumpfheller, C., Huang, Y., HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine DC (2010) Eur. J. Immunol., 40, pp. 36-46 
504 |a Klechevsky, E., Flamar, A.L., Cao, Y., Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR (2010) Blood, 116, pp. 1685-1697 
504 |a Singh, S.K., Streng-Ouwehand, I., Litjens, M., Design of neo-glycoconjugates that target the Mannose Receptor and enhance TLR independent cross-presentation and Th1 polarization (2011) Eur. J. Immunol., 41, pp. 916-925 
504 |a Burgdorf, S., Lukacs-Kornek, V., Kurtc, C., The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation (2006) J. Immunol., 176, pp. 6770-6776 
504 |a Caminischi, I., Proietto, A.I., Ahmet, F., The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement (2008) Blood, 112, pp. 3264-3273 
504 |a Sánchez-Navarro, M., Rojo, J., Targeting DC-SIGN with carbohydrate multivalent systems (2010) Drug News Perspect, 23, pp. 557-572 
504 |a Streng-Ouwehand, I., Unger, W.W.J., van Kooyk, Y., C-type lectin receptors for tumor eradication: future directions (2011) Cancers, , 3: 3169-3188 
504 |a Salatino, M., Rabinovich, G.A., Fine-tuning antitumor responses through the control of galectin-glycan interactions: an overview (2011) Methods Mol. Biol., 677, pp. 355-374 
504 |a Rubinstein, N., Alvarez, M., Zwirner, N.W., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251 
504 |a Cedeno-Laurent, F., Opperman, M.J., Barthel, S.R., Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity (2012) J. Invest. Dermatol, 132, pp. 410-420 
504 |a Juszczynski, P., Ouyang, J., Monti, S., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 13134-13139 
504 |a Banh, A., Zhang, J., Cao, H., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71, pp. 4423-4431 
504 |a Kuo, P.L., Hung, J.Y., Huang, S.K., Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway (2011) J. Immunol., 186, pp. 1521-1530 
504 |a Tang, D., Yuan, Z., Xue, X., High expression of galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer (2011) Int. J. Cancer., , doi:. [Epub ahead of print 
504 |a Soldati, R., Berger, E., Zenclussen, A.C., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2011) Int. J. Cancer., , doi:. [Epub ahead of print 
504 |a Dardalhon, V., Anderson, A.C., Karman, J., Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells (2010) J. Immunol., 185, pp. 1383-1392 
504 |a Demotte, N., Wieërs, G., Van Der Smissen, P., A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice (2010) Cancer Res., 70, pp. 7476-7748 
504 |a Tsuboi, S., Sutoh, M., Hatakeyama, S., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J., 30, pp. 3173-3185 
504 |a Nicoll, G., Avril, T., Lock, K., Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms (2003) Eur. J. Immunol., 33, pp. 1642-1648 
504 |a Ohta, M., Ishida, A., Toda, M., Immunomodulation of monocyte-derived dendritic cells through ligation of tumor-produced mucins to Siglec-9 (2010) Biochem. Biophys. Res. Commun., 402, pp. 663-669 
520 3 |a Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings. © 2012 New York Academy of Sciences.  |l eng 
593 |a Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 
593 |a Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina 
593 |a Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, Netherlands 
593 |a Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States 
690 1 0 |a C-TYPE LECTINS 
690 1 0 |a GALECTINS 
690 1 0 |a GLYCANS 
690 1 0 |a GLYCOBIOLOGY 
690 1 0 |a GLYCOIMMUNOLOGY 
690 1 0 |a LECTINS 
690 1 0 |a SIGLECS 
690 1 0 |a BINDING PROTEIN 
690 1 0 |a CARBOHYDRATE 
690 1 0 |a GALECTIN 
690 1 0 |a GLYCAN 
690 1 0 |a GLYCAN BINDING PROTEIN 
690 1 0 |a GLYCOPROTEIN 
690 1 0 |a LECTIN 
690 1 0 |a LIPID 
690 1 0 |a MAJOR HISTOCOMPATIBILITY ANTIGEN CLASS 2 
690 1 0 |a NUCLEIC ACID 
690 1 0 |a NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a AUTOIMMUNITY 
690 1 0 |a CHRONIC INFLAMMATION 
690 1 0 |a GLYCOBIOLOGY 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN IMMUNODEFICIENCY VIRUS 
690 1 0 |a IMMUNE RESPONSE 
690 1 0 |a IMMUNE SYSTEM 
690 1 0 |a INNATE IMMUNITY 
690 1 0 |a NONHUMAN 
690 1 0 |a PATHOGENESIS 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a REVIEW 
690 1 0 |a TUMOR IMMUNITY 
700 1 |a van Kooyk, Y. 
700 1 |a Cobb, B.A. 
773 0 |d Blackwell Publishing Inc., 2012  |g v. 1253  |h pp. 1-15  |k n. 1  |p Ann. New York Acad. Sci.  |x 00778923  |w (AR-BaUEN)CENRE-1541  |t Annals of the New York Academy of Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860252480&doi=10.1111%2fj.1749-6632.2012.06492.x&partnerID=40&md5=874de88cc04898c21a0cd6dde57e7865  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1749-6632.2012.06492.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00778923_v1253_n1_p1_Rabinovich  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1253_n1_p1_Rabinovich  |y Registro en la Biblioteca Digital 
961 |a paper_00778923_v1253_n1_p1_Rabinovich  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70680