The neuroethology of escape in crabs: From sensory ecology to neurons and back

A major challenge in neurobiology is to understand how brains function in animals behaving in the complexity of their natural environment. Progress will depend on our ability to correctly interpret results from laboratory experiments in the light of information processing demands identified by study...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hemmi, J.M
Otros Autores: Tomsic, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15597caa a22015017a 4500
001 PAPER-9723
003 AR-BaUEN
005 20230607131854.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84860365672 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a COPUE 
100 1 |a Hemmi, J.M. 
245 1 4 |a The neuroethology of escape in crabs: From sensory ecology to neurons and back 
260 |c 2012 
270 1 0 |m Hemmi, J.M.; ARC Centre of Excellence in Vision Science and Research School of Biology, Australian National University, Canberra, Australia; email: jan.hemmi@uwa.edu.au 
506 |2 openaire  |e Política editorial 
504 |a Palmer, C.R., Kristan, W.B., Contextual modulation of behavioral choice (2011) Curr Opin Neurobiol, 21, pp. 520-526 
504 |a Boeddeker, N., Lindemann, J.P., Egelhaaf, M., Zeil, J., Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths (2005) J Comp Physiol A, 191, pp. 1143-1155 
504 |a Straw, A.D., Rainsford, T., O'Carroll, D.C., Contrast sensitivity of insect motion detectors to natural images (2008) J Vis, 8. , doi:32.10.1167/8.3.32 
504 |a van Hateren, J.H., Kern, R., Schwerdtfeger, G., Egelhaaf, M., Function and coding in the blowfly H1 neuron during naturalistic optic flow (2005) J Neurosci, 25, pp. 4343-4352 
504 |a Einhauser, W., König, P., Getting real-sensory processing of natural stimuli (2010) Curr Opin Neurobiol, 20, pp. 389-395 
504 |a Maimon, G., Straw, A.D., Dickinson, M.H., Active flight increases the gain of visual motion processing in Drosophila (2010) Nat Neurosci, 13, pp. 393-399 
504 |a Egelhaaf, M., Grewe, J., Kern, R., Warzecha, A.K., Outdoor performance of a motion-sensitive neuron in the blowfly (2001) Vision Res, 41, pp. 3627-3637 
504 |a Chiappe, M.E., Seelig, J.D., Reiser, M.B., Jayaraman, V., Walking modulates speed sensitivity in Drosophila motion vision (2010) Curr Biol, 20, pp. 1470-1475 
504 |a Marder, E., Bucher, D., Schulz, D.J., Taylor, A.L., Invertebrate central pattern generation moves along (2005) Curr Biol, 15, pp. R685-R699 
504 |a Romano, A., Locatelli, F., Freudenthal, R., Merlo, E., Feld, M., Ariel, P., Lemos, D., Fustinana, M.S., Lessons from a crab: molecular mechanisms in different memory phases of Chasmagnathus (2006) Biol Bull, 210, pp. 280-288 
504 |a Land, M.F., The roles of head movements in the search and capture strategy of a tern (Aves, Laridae) (1999) J Comp Physiol A, 184, pp. 265-272 
504 |a Hemmi, J.M., Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation (2005) Anim Behav, 69, pp. 603-614 
504 |a Oliva, D., Medan, V., Tomsic, D., Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae) (2007) J Exp Biol, 210, pp. 865-880 
504 |a Zeil, J., Hemmi, J.M., The visual ecology of fiddler crabs (2006) J Comp Physiol A, 192, pp. 1-25 
504 |a Silva, P.V., Luppi, T.A., Spivak, E.D., Anger, K., Reproductive traits of an estuarine crab, Neohelice (Chasmagnathus) granulata (Brachyura: Grapsoidea: Varunidae), in two contrasting habitats (2009) Sci Mar, 73, pp. 117-127 
504 |a Hemmi, J.M., Zeil, J., Burrow surveillance in fiddler crabs. II. The sensory cues (2003) J Exp Biol, 206, pp. 3951-3961 
504 |a Hemmi, J.M., Predator avoidance in fiddler crabs: 2. The visual cues (2005) Anim Behav, 69, pp. 615-625 
504 |a Smolka, J., Hemmi, J.M., Topography of vision and behaviour (2009) J Exp Biol, 212, pp. 3522-3532 
504 |a Zeil, J., Al-Mutairi, M.M., The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda) (1996) J Exp Biol, 199, pp. 1569-1577 
504 |a Land, M., Layne, J., The visual control of behavior in fiddler crabs. 1. Resolution, thresholds and the role of the horizon (1995) J Comp Physiol A, 177, pp. 81-90 
504 |a Berón de Astrada, M., Bengocheo, M., Medan, V., Tomsic, D., Regionalization in the eye of the grapsid crab Chasmagnathus granulatus: variation of resolution and facet diameters (2011) J Comp Physiol A, , doi:10.1007/s00359-011-0697-7 
504 |a Nalbach, H.O., Zeil, J., Forzin, L., Multisensory control of eye-stalk orientation in space: crabs from different habitats rely on different senses (1989) J Comp Physiol A, 165, pp. 643-649 
504 |a Hemmi, J.M., Pfeil, A., A multi-stage anti-predator response increases information on predation risk (2010) J Exp Biol, 213, pp. 1484-1489 
504 |a Hemmi, J.M., Zeil, J., Animals as prey: perceptual limitations and behavioural options (2005) Mar Ecol Prog Ser, 287, pp. 274-278 
504 |a Smolka, J., Zeil, J., Hemmi, J.M., Natural visual cues eliciting predator avoidance in fiddler crabs (2011) Proc R Soc B, 278, pp. 3584-3592 
504 |a Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J Neurophysiol, 98, pp. 2414-2428 
504 |a Land, M., Layne, J., The visual control of behavior in fiddler crabs. 2. Tracking control systems in courtship and defense (1995) J Comp Physiol A, 177, pp. 91-103 
504 |a Nalbach, H.O., Visually elicited escape in crabs (1990) Frontiers in Crustacean Neurobiology, pp. 165-172. , Birkhaeuser Verlag, K. Wiese, W.D. Krent, J. Tautz, H. Reichert, B. Mulloney (Eds.) 
504 |a Ribeiro, P.D., Christy, J.H., Rissanen, R.J., Kim, T.W., Males are attracted by their own courtship signals (2006) Behav Ecol Sociobiol, 61, pp. 81-89 
504 |a Zeil, J., Layne, J., Path integration in fiddler crabs and its relation to habitat and social life (2002) Crustacean Experimental Systems in Neurobiology, pp. 227-246. , Springer, K. Wiese (Ed.) 
504 |a Layne, J.E., Barnes, W.J., Duncan, L.M., Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system (2003) J Exp Biol, 206, pp. 4425-4442 
504 |a Zeil, J., Homing in fiddler crabs (Uca lactea annulipes and Uca vomeris: Ocypodidae) (1998) J Comp Physiol A, 183, pp. 367-377 
504 |a Walls, M.L., Layne, J.E., Fiddler crabs accurately measure two-dimensional distance over three-dimensional terrain (2009) J Exp Biol, 212, pp. 3236-3240 
504 |a Walls, M.L., Layne, J.E., Direct evidence for distance measurement via flexible stride integration in the fiddler crab (2009) Curr Biol, 19, pp. 25-29 
504 |a Hemmi, J.M., Merkle, T., High stimulus specificity characterizes anti-predator habituation under natural conditions (2009) Proc R Soc B, 276, pp. 4381-4388 
504 |a Tomsic, D., Berón de Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J Neurosci, 23, pp. 8539-8546 
504 |a Berón de Astrada, M., Sztarker, J., Tomsic, D., Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo (2001) J Comp Physiol A, 187, pp. 37-44 
504 |a Berón de Astrada, M., Medan, V., Tomsic, D., How visual space maps in the optic neuropils of a crab (2011) J Comp Neurol, 519, pp. 1631-1639 
504 |a Sztarker, J., Strausfeld, N.J., Andrew, D., Tomsic, D., Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus (2009) J Comp Neurol, 513, pp. 129-150 
504 |a Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J Comp Neurol, 493, pp. 396-411 
504 |a Berón de Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J Comp Physiol A, 188, pp. 539-551 
504 |a Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J Comp Physiol A, 190, pp. 951-962 
504 |a Sztarker, J., Tomsic, D., Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations (2008) J Comp Physiol A, 194, pp. 587-596 
504 |a Hemmi, J.M., Zeil, J., Robust judgement of inter-object distance by an arthropod (2003) Nature, 421, pp. 160-163 
504 |a Tomsic, D., Massoni, V., Maldonado, H., Habituation to a danger stimulus in two semiterrestrial crabs: ontogenic, ecological and opioid modulation correlates (1993) J Comp Physiol A, 173, pp. 621-633 
504 |a Lozada, M., Romano, A., Maldonado, H., Long-term habituation to a danger stimulus in the crab Chasmagnathus granulatus (1990) Physiol Behav, 47, pp. 35-41 
504 |a Fathala Mdel, V., Iribarren, L., Kunert, M.C., Maldonado, H., A field model of learning: 1. Short-term memory in the crab Chasmagnathus granulatus (2010) J Comp Physiol A, 196, pp. 61-75 
504 |a Fathala Mdel, V., Kunert, M.C., Maldonado, H., A field model of learning: 2. Long-term memory in the crab Chasmagnathus granulatus (2010) J Comp Physiol A, 196, pp. 77-84 
504 |a Raderschall, C.A., Magrath, R.D., Hemmi, J.M., Habituation under natural conditions: model predators are distinguished by approach direction (2011) J Exp Biol, 214, pp. 4207-4214 
504 |a Tomsic, D., Pedreira, M.E., Romano, A., Hermitte, G., Maldonado, H., Context-US association as a determinant of long-term habituation in the crab Chasmagnathus (1998) Anim Learn Behav, 26, pp. 196-209 
504 |a Tomsic, D., Romano, A., Maldonado, H., Behavioral and mechanistic bases of long-term habituation in the crab Chasmagnathus (1998) Adv Exp Med Biol, 446, pp. 17-35 
504 |a Tomsic, D., de Astrada, M.B., Sztarker, J., Maldonado, H., Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus (2009) Neurobiol Learn Mem, 92, pp. 176-182 
504 |a Sztarker, J., Tomsic, D., Brain modularity in arthropods: individual neurons that support " what" but not " where" memories (2011) J Neurosci, 31, pp. 8175-8180 
504 |a Wiersma, C.A.G., Roach, J.L.M., Glantz, R.M., (1982), 4, pp. 1-31. , Neural integration in the optic system. In The Biology of the Crustacea. Neural integration and behavior. Edited by Sandeman DC, Atwood HL. Academic Press; Harrison, R.R., Fotowat, H., Chan, R., Kier, R.J., Olberg, R., Leonardo, A., Gabbiani, F., Wireless neural/EMG telemetry systems for small freely moving animals (2011) IEEE Trans Biomed Circuits Syst, 5, pp. 103-111 
504 |a Fotowat, H., Harrison, R.R., Gabbiani, F., Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors (2011) Neuron, 69, pp. 147-158 
520 3 |a A major challenge in neurobiology is to understand how brains function in animals behaving in the complexity of their natural environment. Progress will depend on our ability to correctly interpret results from laboratory experiments in the light of information processing demands identified by studying the organization of behaviour and the flow of information in naturally behaving animals. Predator avoidance responses of semi-terrestrial crabs offer an excellent opportunity for such an approach. We review here findings from two distinct lines of research: (1) Field studies which have characterized the structure and context of escape behaviour to real and dummy predators, and (2) Laboratory studies which have used computer-simulated images and in vivo intracellular recordings to identify and characterize individual neurons implicated in the control of escape. The results of both approaches highlight the influence of behavioural and environmental context in structuring escape. In order to understand how context and the complex flow of signals are processed and translated into behaviour in natural environments it is imperative that future studies take electrophysiology outdoors. © 2011.  |l eng 
536 |a Detalles de la financiación: Centre of Excellence for Electromaterials Science, Australian Research Council 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We acknowledge funding support from the Australian Research Council's Centre of Excellence Scheme to JMH, and from the University of Buenos Aires , the Agencia Argentina de Promoción Científica y Tecnológica and the Consejo Nacional de Investigaciones Científicas de Argentina to DT. We thank Damian Oliva for help with figures and Jochen Zeil, Ajay Narendra and especially Shaun New for comments on earlier drafts of the manuscript. Appendix A 
593 |a ARC Centre of Excellence in Vision Science and Research School of Biology, Australian National University, Canberra, Australia 
593 |a School of Animal Biology, The UWA Oceans Institute, University of Western Australia, Crawley 6009, WA, Australia 
593 |a Lab. Neurobiología de la Memoria, Depto. Fisiología Biologia Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina 
690 1 0 |a BRAIN FUNCTION 
690 1 0 |a CRAB 
690 1 0 |a DECISION MAKING 
690 1 0 |a ENVIRONMENTAL FACTOR 
690 1 0 |a ESCAPE BEHAVIOR 
690 1 0 |a ETHOLOGY 
690 1 0 |a HABITUATION 
690 1 0 |a LEARNING 
690 1 0 |a LOCOMOTION 
690 1 0 |a MOTOR CONTROL 
690 1 0 |a NEUROBIOLOGY 
690 1 0 |a NEUROETHOLOGY 
690 1 0 |a NEUROMODULATION 
690 1 0 |a NEUROPHYSIOLOGY 
690 1 0 |a NEUROSCIENCE 
690 1 0 |a NONHUMAN 
690 1 0 |a PERCEPTIVE DISCRIMINATION 
690 1 0 |a PREDATOR AVOIDANCE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROPRIOCEPTION 
690 1 0 |a REVIEW 
690 1 0 |a SENSORY NERVE 
690 1 0 |a SENSORY NERVE CELL 
690 1 0 |a SENSORY STIMULATION 
690 1 0 |a TERRESTRIAL SPECIES 
690 1 0 |a THREAT 
690 1 0 |a VISUAL DISCRIMINATION 
690 1 0 |a VISUAL STIMULATION 
690 1 0 |a VISUOMOTOR COORDINATION 
690 1 0 |a ANIMALS 
690 1 0 |a BRACHYURA 
690 1 0 |a BRAIN 
690 1 0 |a ESCAPE REACTION 
690 1 0 |a ETHOLOGY 
690 1 0 |a MARINE BIOLOGY 
690 1 0 |a NEURAL PATHWAYS 
690 1 0 |a NEUROLOGY 
690 1 0 |a NEURONS 
700 1 |a Tomsic, D. 
773 0 |d 2012  |g v. 22  |h pp. 194-200  |k n. 2  |p Curr. Opin. Neurobiol.  |x 09594388  |w (AR-BaUEN)CENRE-1694  |t Current Opinion in Neurobiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860365672&doi=10.1016%2fj.conb.2011.11.012&partnerID=40&md5=99854cb32a85edd32214a82e482ad569  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.conb.2011.11.012  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09594388_v22_n2_p194_Hemmi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09594388_v22_n2_p194_Hemmi  |y Registro en la Biblioteca Digital 
961 |a paper_09594388_v22_n2_p194_Hemmi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70676