Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro

Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Segretin, M.E
Otros Autores: Lentz, E.M, Wirth, S.A, Morgenfeld, M.M, Bravo-Almonacid, F.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17373caa a22014657a 4500
001 PAPER-9719
003 AR-BaUEN
005 20230518203940.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84858861557 
024 7 |2 cas  |a beta glucuronidase, 9001-45-0; Glucuronidase, 3.2.1.31; Plant Proteins; Recombinant Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLANA 
100 1 |a Segretin, M.E. 
245 1 0 |a Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro 
260 |c 2012 
270 1 0 |m Bravo-Almonacid, F. F.; Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingenieria Genetica y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490, 2do. Piso, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina; email: fbravo@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Akita, M., Takayama, S., Induction and development of potato tubers in a jar fermentor (1994) Plant Cell Tiss Organ Cult, 36 (2), pp. 177-182. , doi:10.1007/BF00037717 
504 |a Anstis, P.J.P., Northcote, D.H., Development of chloroplasts from amyloplasts in potato tuber discs (1976) New Phytol, 72 (3), pp. 449-463. , doi:10.1111/j.1469-8137.1973.tb04394.x 
504 |a Apel, W., Schulze, W.X., Bock, R., Identification of protein stability determinants in chloroplasts (2010) Plant J, 63 (4), pp. 636-650. , doi:10.1111/j.1365-313X.2010.04268.x 
504 |a Artsaenko, O., Kettig, B., Fiedler, U., Conrad, U., Düring, K., Potato tubers as a biofactory for recombinant antibodies (1998) Mol Breed, 4 (4), pp. 313-319. , doi:10.1023/A:1009676832273 
504 |a Bally, J., Nadai, M., Vitel, M., Rolland, A., Dumain, R., Dubald, M., Plant physiological adaptations to the massive foreign protein synthesis occurring in recombinant chloroplasts (2009) Plant Physiol, 150 (3), pp. 1474-1481. , doi:10.1104/pp.109.139816 
504 |a Beaujean, A., Sangwan, R.S., Lecardonnel, A., Sangwan-Norreel, B.S., Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation (1998) J Exp Bot, 49 (326), pp. 1589-1595. , doi:10.1093/jxb/49.326.1589 
504 |a Bock, R., Transgenic plastids in basic research and plant biotechnology (2001) J Mol Biol, 312 (3), pp. 425-438. , doi:10.1006/jmbi.2001.4960 
504 |a Bock, R., Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming (2007) Curr Opin Biotechnol, 18 (2), pp. 100-106. , doi:10.1016/j.copbio.2006.12.001 
504 |a Bock, R., Warzecha, H., Solar-powered factories for new vaccines and antibiotics (2010) Trends Biotechnol, 28 (5), pp. 246-252. , doi:10.1016/j.tibtech.2010.01.006 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254. , doi:S0003269776699996 
504 |a Brosch, M., Krause, K., Falk, J., Krupinska, K., Analysis of gene expression in amyloplasts of potato tubers (2007) Planta, 227 (1), pp. 91-99. , doi:10.1007/s00425-007-0597-9 
504 |a Caldiz, D.O., (2007) Producción, cosecha y almacenamiento de papa en la Argentina, , 2nd edn. McCain Argentina SA, Balcarce-BASF Argentina SA, Ciudad Autónoma de Buenos Aires, Argentina 
504 |a Chen, P., Wang, C., Soong, S., To, K., Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants (2003) Mol Breed, 11 (4), pp. 287-293. , doi: 10. 1023/a: 1023475710642 
504 |a Church, G.M., Gilbert, W., Genomic sequencing (1984) Proc Natl Acad Sci USA, 81 (7), pp. 1991-1995 
504 |a Daniell, H., Transformation and foreign gene expression in plants by microprojectile bombardment (1997) Methods Mol Biol, 62, pp. 463-489. , doi:10.1385/0-89603-480-1:463 
504 |a Daniell, H., Production of biopharmaceuticals and vaccines in plants via the chloroplast genome (2006) Biotechnol J, 1 (10), pp. 1071-1079. , doi:10.1002/biot.200600145 
504 |a Daniell, H., Varma, S., Chloroplast-transgenic plants: panacea-no! Gene containment-yes! (1998) Nat Biotechnol, 16 (7), p. 602. , doi:10.1038/nbt0798-602 
504 |a Dellaporta, S., Wood, J., Hicks, J., A plant DNA minipreparation: version II (1983) Plant Mol Biol Rep, 1 (4), pp. 19-21. , doi:10.1007/BF02712670 
504 |a Donnelly, D., Coleman, W., Coleman, S., Potato microtuber production and performance: a review (2003) Am J Potato Res, 80 (2), pp. 103-115. , doi:10.1007/BF02870209 
504 |a Drechsel, O., Bock, R., Selection of Shine-Dalgarno sequences in plastids (2011) Nucleic Acids Res, 39 (4), pp. 1427-1438. , doi:10.1093/nar/gkq978 
504 |a Eibl, C., Zou, Z., Beck, A., Kim, M., Mullet, J., Koop, H.-U., In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency (1999) Plant J, 19, pp. 333-345. , doi:10.1046/j.1365-313X.1999.00543.x 
504 |a Gray, B., Yang, H., Ahner, B., Hanson, M., An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts (2011) Plant Mol Biol, 76 (3), pp. 345-355. , doi: 10. 1007/s11103-011-9743-7 
504 |a Hawkes, J.H., (1990) The Potato: Evolution, Biodiversity and Genetic Resources, , London: Belhaven Press 
504 |a Jefferson, R.A., Kavanagh, T.A., Bevan, M.W., GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants (1987) EMBO J, 6 (13), pp. 3901-3907 
504 |a Kämäräinen-Karppinen, T., Virtanen, E., Rokka, V.M., Pirttilä, A., Novel bioreactor technology for mass propagation of potato microtubers (2010) Plant Cell Tiss Organ Cult, 101 (2), pp. 245-249. , doi:10.1007/s11240-010-9679-7 
504 |a Kavanagh, T.A., Thanh, N.D., Lao, N.T., McGrath, N., Peter, S.O., Horvath, E.M., Dix, P.J., Medgyesy, P., Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events (1999) Genetics, 152 (3), pp. 1111-1122 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227 (5259), pp. 680-685. , doi:10.1038/227680a0 
504 |a Lentz, E.M., Segretin, M.E., Morgenfeld, M.M., Wirth, S.A., Dus Santos, M.J., Mozgovoj, M.V., Wigdorovitz, A., Bravo-Almonacid, F.F., High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants (2010) Planta, 231 (2), pp. 387-395. , doi:10.1007/s00425-009-1058-4 
504 |a Ljubicic, J.M., Wrischer, M., Ljubesic, N., Formation of the photosynthetic apparatus in plastids during greening of potato microtubers (1998) Plant Physiol Biochem, 36 (10), pp. 747-752. , doi:10.1016/S0981-9428(98)80025-9 
504 |a Maliga, P., Plastid transformation in higher plants (2004) Annu Rev Plant Biol, 55, pp. 289-313. , doi:10.1146/annurev.arplant.55.031903.141633 
504 |a Maliga, P., Bock, R., Plastid biotechnology: food, fuel and medicine for the 21st century (2011) Plant Physiol, , doi: 10. 1104/pp. 110. 170969 
504 |a Morgenfeld, M., Segretin, M.E., Wirth, S., Lentz, E., Zelada, A., Mentaberry, A., Gissmann, L., Bravo-Almonacid, F., Potato virus X coat protein fusion to human papillomavirus 16 E7 oncoprotein enhance antigen stability and accumulation in tobacco chloroplast (2009) Mol Biotechnol, 43 (3), pp. 243-249. , doi:10.1007/s12033-009-9195-3 
504 |a Mullins, E., Milbourne, D., Petti, C., Doyle-Prestwich, B.M., Meade, C., Potato in the age of biotechnology (2006) Trends Plant Sci, 11 (5), pp. 254-260. , doi:10.1016/j.tplants.2006.03.002 
504 |a Nguyen, T.T., Nugent, G., Cardi, T., Dix, P.J., Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.) (2005) Plant Sci, 168 (6), pp. 1495-1500. , doi:10.1016/j.plantsci.2005.01.023 
504 |a Oey, M., Lohse, M., Kreikemeyer, B., Bock, R., Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic (2009) Plant J, 57 (3), pp. 436-445. , doi:10.1111/j.1365-313X.2008.03702.x 
504 |a Percival, G., Dixon, G.R., Sword, A., Glycoalkaloid concentration of potato tubers following exposure to daylight (1996) J Sci Food Agric, 71 (1), pp. 59-63. , doi:10.1002/(SICI)1097-0010(199605)71:1&59::AID-JSFA548>3.0.CO;2-1 
504 |a Ruhlman, T., Verma, D., Samson, N., Daniell, H., The role of heterologous chloroplast sequence elements in transgene integration and expression (2010) Plant Physiol, 152 (4), pp. 2088-2104. , doi:10.1104/pp.109.152017 
504 |a Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, , New York: Cold Spring Harbor Laboratory Press 
504 |a Sidorov, V.A., Kasten, D., Pang, S.Z., Hajdukiewicz, P.T., Staub, J.M., Nehra, N.S., Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker (1999) Plant J, 19 (2), pp. 209-216. , doi:10.1046/j.1365-313X.1999.00508.x 
504 |a Staub, J.M., Maliga, P., Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA (1993) EMBO J, 12 (2), pp. 601-606 
504 |a Staub, J.M., Maliga, P., Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids (1994) Plant J, 6 (4), pp. 547-553 
504 |a Stensballe, A., Hald, S., Bauw, G., Blennow, A., Welinder, K.G., The amyloplast proteome of potato tuber (2008) FEBS J, 275 (8), pp. 1723-1741. , doi:10.1111/j.1742-4658.2008.06332.x 
504 |a Svab, Z., Maliga, P., High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene (1993) Proc Natl Acad Sci USA, 90 (3), pp. 913-917. , doi:10.1073/pnas.90.3.913 
504 |a Svab, Z., Hajdukiewicz, P., Maliga, P., Stable transformation of plastids in higher plants (1990) Proc Natl Acad Sci USA, 87 (21), pp. 8526-8530. , doi:10.1073/pnas.87.21.8526 
504 |a Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., Fischer, R., Molecular farming in plants: host systems and expression technology (2003) Trends Biotechnol, 21 (12), pp. 570-578. , doi:10.1016/j.tibtech.2003.10.002 
504 |a Valkov, V.T., Scotti, N., Kahlau, S., Maclean, D., Grillo, S., Gray, J.C., Bock, R., Cardi, T., Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control (2009) Plant Physiol, 150 (4), pp. 2030-2044. , doi:10.1104/pp.109.140483 
504 |a Valkov, V.T., Gargano, D., Manna, C., Formisano, G., Dix, P.J., Gray, J.C., Scotti, N., Cardi, T., High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences (2011) Transgenic Res, 20 (1), pp. 137-151. , doi:10.1007/s11248-010-9402-9 
504 |a Verma, D., Daniell, H., Chloroplast vector systems for biotechnology applications (2007) Plant Physiol, 145 (4), pp. 1129-1143. , doi:10.1104/pp.107.106690 
504 |a Virgin, H.I., Sundqvist, C., Pigment formation in potato tubers (Solanum tuberosum) exposed to light followed by darkness (1992) Physiol Plant, 86 (4), pp. 587-592. , doi:10.1111/j.1399-3054.1992.tb02174.x 
504 |a Wakasugi, T., Sugita, M., Tsudzuki, T., Sugiura, M., Updated gene map of tobacco chloroplast DNA (1998) Plant Mol Biol Rep, 16 (3), pp. 231-241. , doi:10.1023/A:1007564209282 
504 |a Wirth, S., Segretin, M.E., Mentaberry, A., Bravo-Almonacid, F., Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light (2006) J Biotechnol, 125 (2), pp. 159-172. , doi:10.1016/j.jbiotec.2006.02.012 
504 |a Zhu, Y.S., Merkle-Lehman, D.L., Kung, S.D., Light-induced transformation of amyloplasts into chloroplasts in potato tubers (1984) Plant Physiol, 75 (1), pp. 142-145. , doi:10.1104/pp.75.1.142 
520 3 |a Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato. © 2011 Springer-Verlag.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Acknowledgments Authors wish to thank Sylvain Raffaele for carefully reading the manuscript. This work has been supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina). MES is fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). EML is fellow of ANPCyT, Argentina. MMM is assistant teacher of Universidad de Buenos Aires, Argentina. FBA and SAW are research scientists of CONICET. 
593 |a Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingenieria Genetica y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490, 2do. Piso, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Intendente Guiraldes 2160 Pab. II, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina 
690 1 0 |a Β-GLUCURONIDASE 
690 1 0 |a CHLOROPLAST 
690 1 0 |a PLASTID TRANSFORMATION 
690 1 0 |a POTATO 
690 1 0 |a TOBACCO 
690 1 0 |a TUBER 
690 1 0 |a BETA GLUCURONIDASE 
690 1 0 |a RECOMBINANT PROTEIN 
690 1 0 |a VEGETABLE PROTEIN 
690 1 0 |a ARTICLE 
690 1 0 |a BIOSYNTHESIS 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a GENETICS 
690 1 0 |a PLANT LEAF 
690 1 0 |a PLANT TUBER 
690 1 0 |a PLASTID 
690 1 0 |a POTATO 
690 1 0 |a TOBACCO 
690 1 0 |a TRANSGENE 
690 1 0 |a TRANSGENIC PLANT 
690 1 0 |a GENE EXPRESSION REGULATION, PLANT 
690 1 0 |a GLUCURONIDASE 
690 1 0 |a PLANT LEAVES 
690 1 0 |a PLANT PROTEINS 
690 1 0 |a PLANT TUBERS 
690 1 0 |a PLANTS, GENETICALLY MODIFIED 
690 1 0 |a PLASTIDS 
690 1 0 |a RECOMBINANT PROTEINS 
690 1 0 |a SOLANUM TUBEROSUM 
690 1 0 |a TOBACCO 
690 1 0 |a TRANSGENES 
690 1 0 |a NICOTIANA TABACUM 
690 1 0 |a SOLANUM TUBEROSUM 
690 1 0 |a TUBER (TRUFFLE) 
700 1 |a Lentz, E.M. 
700 1 |a Wirth, S.A. 
700 1 |a Morgenfeld, M.M. 
700 1 |a Bravo-Almonacid, F.F. 
773 0 |d 2012  |g v. 235  |h pp. 807-818  |k n. 4  |p Planta  |x 00320935  |w (AR-BaUEN)CENRE-135  |t Planta 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858861557&doi=10.1007%2fs00425-011-1541-6&partnerID=40&md5=fa82e96fccf2fd4f42d64b8b329a5a40  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00425-011-1541-6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00320935_v235_n4_p807_Segretin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00320935_v235_n4_p807_Segretin  |y Registro en la Biblioteca Digital 
961 |a paper_00320935_v235_n4_p807_Segretin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70672