Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation

Many industries have high heavy metals concentrations in their effluents that should be treated before disposal in drains or natural watercourses. When adsorption process is evaluated to generate and implement an efficient, economical and sustainable method suitable for heavy metals removal from con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Areco, M.M
Otros Autores: Hanela, S., Duran, J., dos Santos Afonso, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15977caa a22020177a 4500
001 PAPER-9688
003 AR-BaUEN
005 20230518203939.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84858335964 
024 7 |2 cas  |a agar, 9002-18-0; cadmium, 22537-48-0, 7440-43-9; copper, 15158-11-9, 7440-50-8; lead, 13966-28-4, 7439-92-1; zinc, 14378-32-6, 7440-66-6; Agar, 9002-18-0; Cadmium, 7440-43-9; Copper, 7440-50-8; Lead, 7439-92-1; Metals, Heavy; Solutions; Zinc, 7440-66-6 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JHMAD 
100 1 |a Areco, M.M. 
245 1 0 |a Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation 
260 |c 2012 
270 1 0 |m dos Santos Afonso, M.; INQUIMAE and Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 3er Piso, C1428EHA Buenos Aires, Argentina; email: dosantos@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Esteves, A.J.P., Valdman, E., Leite, S.G.F., Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. (2000) Biotechnol. Lett., 22, pp. 499-502 
504 |a Harry, E., Treatment of metal-contaminated wastes: why select a biological process (1999) Trends Biotechnol., 17, pp. 462-465 
504 |a Miretzky, P., Saralegui, A., Fernandez Cirelli, A., Simultaneous heavy metal removal mechanism by dead macrophytes (2006) Chemosphere, 62, pp. 247-254 
504 |a Volesky, B., (2003) Sorption and Biosorption, , BV-Sorbex Inc., Quebec, Canada 
504 |a Ahmady-Asbchin, S., Andres, Y., Gerente, C., Le Cloirec, P., Natural seaweed waste as sorbent for heavy metal removal from solution (2009) Environ. Technol., 30, pp. 755-762 
504 |a Areco, M.M., dos Santos Afonso, M., Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies (2010) Colloid Surf. B, 81, pp. 620-628 
504 |a Jha, B., Basha, S., Jaiswar, S., Mishra, B., Thakur, M.C., Biosorption of Cd(II) and Pb(II) onto brown seaweed, Lobophora variegata (Lamouroux): kinetic and equilibrium studies (2009) Biodegradation, 20, pp. 1-13 
504 |a Kleinubing, S.J., Guibal, E., da Silva, M.G.C., Characterization of Sargassum sp. from Brazil and evaluation of Cu 2+ and Ni 2+ biosorption (2009) Biohydrometallurgy: A Meeting Point Between Microbial Ecology, Metal Recovery Processes and Environmental Remediation, Proceedings, pp. 589-592 
504 |a Saeed, A., Iqbal, M., Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk) (2005) J. Hazard. Mater., 117, pp. 65-73 
504 |a Murphy, V., Hughes, H., McLoughlin, P., Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species (2009) J. Hazard. Mater., 166, pp. 318-326 
504 |a Ariff, A.B., Mel, M., Hasan, M.A., Karim, M.I.A., The kinetics and mechanism of lead (II) biosorption by powderized Rhizopus oligosporus (1999) World J. Microbiol. Biotechnol., 15, pp. 291-298 
504 |a Van der Wal, A., Norde, W., Zhnder, J.B., Lyklema, J., Determination of the total charge in the cell walls of Grampositive bacteria (1997) Colloid Surf. B, 9, pp. 81-100 
504 |a Esposito, A., Paganelli, F., Veglio, F., PH related equilibria models for biosorption in single metal systems (2002) Chem. Eng. Sci., 57, pp. 307-313 
504 |a Valdman, E., Leite, S.G.F., Biosorption of Cd, Zn and Cu by Sargassum sp. waste biomass (2000) Bioprocess. Eng., 22, pp. 171-173 
504 |a Kalyani, S., Srinivasa Rao, P., Krishnaiah, A., Removal of nickel (II) from aqueous solutions marine macroalgae as the sorbing biomass (2004) Chemosphere, 57, pp. 1225-1229 
504 |a Ferraz, A.I., Tavares, A.I., Teixeira, J.A., Cr(III) removal and recovery from Saccharomyces cerevisiae (2004) Chem. Eng. J., 105, pp. 11-20 
504 |a Gong, R., Ding, Y., Liu, H., Chen, Q., Liu, Z., Lead biosorption and desorption by intact and pretreated spirulina maxima biomass (1995) Chemosphere, 58, pp. 125-130 
504 |a Donghee, P., Yeoung-Sang, Y., Chi Kyu, A., Jong Moon, P., Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass (2007) Chemosphere, 66, pp. 939-946 
504 |a Vijayaraghavan, K., Mao, J., Yun, Y.S., Biosorption of methylene blue from aqueous solution using free and polysulfone-immobilized Corynebacterium glutamicum: batch and column studies (2008) Bioresour. Technol., 99, pp. 2864-2871 
504 |a Sengil, I.A., Ozacar, M., Competitive biosorption of Pb2+ Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin (2009) J. Hazard. Mater., 166, pp. 1488-1494 
504 |a Huang, X., Wang, Y., Liao, X., Shi, B., Adsorptive recovery of Au 3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica (2010) J. Hazard. Mater., 183, pp. 793-798 
504 |a Suharso, Buhani, Sumadi, Immobilization of S. duplicatum supported silica gel matrix and its application on adsorption-desorption of Cu (II), Cd (II) and Pb (II) ions (2010) Desalination, 263, pp. 64-69 
504 |a Sun, Y.M., Horng, C.Y., Chang, F.L., Cheng, L.C., Tian, W.X., Biosorption of lead, mercury, and cadmium ions by Aspergillus terreus immobilized in a natural matrix (2010) Pol. J. Microbiol., 59, pp. 37-44 
504 |a Ormerod, E.C., Newman, A.C.D., Water sorption on Ca saturated clays: II. Internal and external surfaces of mortmorillonite (1983) Clay Miner., 18, pp. 289-299 
504 |a Torres Sánchez, R.M., Falasca, S., Specific surface area and surface charges of some argentinian soils (1997) Z. Pflanz. Bodenkunde, 160, pp. 223-226 
504 |a Davis, T.A., Volesky, B., Vieira, R.H.S.F., Sargassum seaweed as biosorbent for heavy metals (2000) Water Res., 34, pp. 4270-4278 
504 |a Shiue, A., Den, W., Kang, Y.H., Hu, S.C., Jou, G.T., Lin, C.H., Hu, V., Lin, S.I., Validation and application of adsorption breakthrough models for the chemical filters used in the make-up air unit (MAU) of a cleanroom (2011) Build. Environ., 46, pp. 468-477 
504 |a Aksu, Z., Gönen, F., Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves (2004) Process Biochem., 39, pp. 599-613 
504 |a Fagundes-Klen, M.R., Veit, M.T., Borba, C.E., Bergamasco, R., de Lima Vaz, L.G., da Silva, E.A., Copper biosorption by biomass of marine alga: study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column (2010) Water Air Soil Pollut., 213, pp. 15-26 
504 |a Liu, C.C., Li, Y.S., Chen, Y.M., Wang, M.K., Chiou, C.S., Yang, C.Y., Lin, Y.A., Biosorption of chromium, copper and zinc on rice wine processing waste sludge in fixed bed (2011) Desalination, 267, pp. 20-24 
504 |a Platte, J.A., Marcy, V.M., Photometric determination of zinc with zincón (1959) Anal. Chem., 31, pp. 1226-1228 
504 |a Sandell, E.B., (1959) Colorimetric Determination of Trace Metals, , Interscience Publishers, New York 
504 |a Ho, Y.S., Ofomaja, A.E., Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber (2006) J. Hazard. Mater. B, 129, pp. 137-142 
504 |a Ho, Y.S., McKay, G., Sorption of dyes and copper ions onto biosorbents (2003) Process Biochem., 38, pp. 1047-1061 
504 |a Homagai, P.L., Ghimire, K.N., Inoue, K., Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse (2010) Bioresour. Technol., 101, pp. 2067-2069 
504 |a Guo, X., Zhang, S., Shan, X., Adsorption of metal ions on lignin (2008) J. Hazard. Mater., 151, pp. 134-142 
504 |a Rao, R.A.K., Khan, M.A., Biosorption of bivalent metal ions from aqueous solution by an agricultural waste: kinetics, thermodynamics and environmental effects (2009) Colloid Surf. A, 332, pp. 121-128 
504 |a Solari, P., Zouboulis, A.I., Matis, K.A., Stalidis, G.A., Removal of toxic metal by biosorption onto nonliving sewage sludge (1996) Sep. Sci. Technol., 31, pp. 1075-1092 
504 |a Akhtar, M., Iqbal, S., Kausar, A., Bhanger, M.I., Shaheen, M.A., An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk (2009) Colloid Surf. B, 75, pp. 149-155 
504 |a Li, Q.Z., Chai, L.Y., Yang, Z.H., Wang, Q.W., Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions (2009) Appl. Surf. Sci., 255, pp. 4298-4303 
504 |a Pentari, D., Perdikatsis, V., Katsimicha, D., Kanaki, A., Sorption properties of low calorific value Greek lignites: Removal of lead, cadmium, zinc and copper ions from aqueous solutions (2009) J. Hazard. Mater., 168, pp. 1017-1021 
504 |a Paradossi, G., Cavalieri, F., Pizzoferrato, L., Liquori, A.M., A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva (1999) Int. J. Biol. Macromol., 25, pp. 309-315 
504 |a Stumm, W., Morgan, J.J., (1992) Chemistry of the Solid-Water Interface, , John Wiley & Sons, USA 
504 |a Gurbuz, F., Removal of toxic hexavalent chromium ions from aqueous solution by a natural biomaterial: batch and column adsorption (2009) Adsorpt. Sci. Technol., 27, pp. 745-759 
504 |a Kalavathy, H., Karthik, B., Miranda, L.R., Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies (2010) Colloid Surf. B, 78, pp. 291-302 
504 |a Marandi, R., Ardejani, F.D., Safaei, M., Biosorption of lead and zinc ions by Phanerocheat chrysasporium - research on fixed bed column (2008) Mine Water and the Environment, Proceedings, pp. 293-296 
520 3 |a Many industries have high heavy metals concentrations in their effluents that should be treated before disposal in drains or natural watercourses. When adsorption process is evaluated to generate and implement an efficient, economical and sustainable method suitable for heavy metals removal from contaminated effluents, it is necessary to develop an experimental setup that contains the adsorbent. Ulva lactuca, a marine green alga, was studied as a natural biosorbent for heavy metals at acid pH conditions. Adsorption experiments were carried out in glass columns and in batch where the alga was suspended or fixed in an agar matrix. Langmuir and Freundlich models were applied to the experimental results. Langmuir model best describes the adsorption isotherms in all analyzed cases. The adsorption capacity increases with pH. Kinetic studies demonstrate that, in most studied cases, the adsorption follows a pseudo second order kinetics model. Removal efficiencies of the biomaterial supported in agar or fixed in columns were: fixed in columns > suspended in batch mode > fixed in agar. Finally, the effect of the presence of two sorbates, Cd and Pb, in the solution was measured and results demonstrate that adsorption of both metals are diminished by co/adsorption. © 2012 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: BID 1728 OC-AR PICT 13-08893 
536 |a Detalles de la financiación: Instituto Nacional del Cáncer 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, UBACyT X043 
536 |a Detalles de la financiación: The authors acknowledge Universidad de Buenos Aires, Secretaría de Ciencia y Técnica through Project UBACyT X043 , SECyT FONCyT-ANCyP through Project BID 1728 OC-AR PICT 13-08893 for financial support, and to the authorities of the Centro de Tecnología del Uso del Agua, Instituto Nacional del Agua for encourage and support the project related with this work. Appendix A See . Fig. A1 
593 |a INQUIMAE and Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II 3er Piso, C1428EHA Buenos Aires, Argentina 
593 |a Programa de Tecnologías de Tratamiento, Centro de Tecnología del Uso del Agua, Instituto Nacional del Agua, Au. Ezeiza-Cañuelas km. 1.62 (1804), Ezeiza, Buenos Aires, Argentina 
690 1 0 |a ADSORPTION MATRIX 
690 1 0 |a BIOSORPTION 
690 1 0 |a METAL REMOVAL 
690 1 0 |a ULVA LACTUCA 
690 1 0 |a ADSORPTION CAPACITIES 
690 1 0 |a ADSORPTION EXPERIMENT 
690 1 0 |a ADSORPTION PROCESS 
690 1 0 |a BATCH MODES 
690 1 0 |a BIOSORBENTS 
690 1 0 |a EXPERIMENTAL SETUP 
690 1 0 |a FREUNDLICH MODELS 
690 1 0 |a GLASS COLUMN 
690 1 0 |a GREEN ALGA 
690 1 0 |a HEAVY METALS REMOVALS 
690 1 0 |a KINETIC STUDY 
690 1 0 |a LANGMUIR MODELS 
690 1 0 |a LANGMUIRS 
690 1 0 |a METAL REMOVAL 
690 1 0 |a METALS CONCENTRATIONS 
690 1 0 |a PH CONDITION 
690 1 0 |a PSEUDO SECOND ORDER KINETICS 
690 1 0 |a REMOVAL EFFICIENCIES 
690 1 0 |a SORBATES 
690 1 0 |a ULVA LACTUCA 
690 1 0 |a ALGAE 
690 1 0 |a BIOLOGICAL MATERIALS 
690 1 0 |a BIOSORPTION 
690 1 0 |a CADMIUM 
690 1 0 |a EFFLUENTS 
690 1 0 |a GALLIUM ALLOYS 
690 1 0 |a LEAD 
690 1 0 |a POLYSACCHARIDES 
690 1 0 |a ZINC COMPOUNDS 
690 1 0 |a ADSORPTION 
690 1 0 |a AGAR 
690 1 0 |a CADMIUM 
690 1 0 |a COPPER 
690 1 0 |a GLASS 
690 1 0 |a LEAD 
690 1 0 |a ZINC 
690 1 0 |a ABSORPTION 
690 1 0 |a CADMIUM 
690 1 0 |a COPPER 
690 1 0 |a EFFLUENT 
690 1 0 |a GREEN ALGA 
690 1 0 |a LEAD 
690 1 0 |a PHYTOMASS 
690 1 0 |a REACTION KINETICS 
690 1 0 |a ZINC 
690 1 0 |a ACIDITY 
690 1 0 |a ADSORPTION 
690 1 0 |a ARTICLE 
690 1 0 |a BIOMASS 
690 1 0 |a BIOSORPTION 
690 1 0 |a CELL WALL 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DESORPTION 
690 1 0 |a GREEN ALGA 
690 1 0 |a HEAVY METAL REMOVAL 
690 1 0 |a IONIC STRENGTH 
690 1 0 |a ISOTHERM 
690 1 0 |a KINETICS 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATION 
690 1 0 |a ROOM TEMPERATURE 
690 1 0 |a ULVA LACTUCA 
690 1 0 |a ADSORPTION 
690 1 0 |a AGAR 
690 1 0 |a ALGORITHMS 
690 1 0 |a BIOMASS 
690 1 0 |a CADMIUM 
690 1 0 |a COPPER 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a KINETICS 
690 1 0 |a LEAD 
690 1 0 |a METALS, HEAVY 
690 1 0 |a MICROSCOPY, ELECTRON, SCANNING 
690 1 0 |a REPRODUCIBILITY OF RESULTS 
690 1 0 |a SOLUTIONS 
690 1 0 |a ULVA 
690 1 0 |a WASTE DISPOSAL, FLUID 
690 1 0 |a WATER PURIFICATION 
690 1 0 |a ZINC 
690 1 0 |a ALGAE 
690 1 0 |a CHLOROPHYTA 
690 1 0 |a ULVA LACTUCA 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
700 1 |a Hanela, S. 
700 1 |a Duran, J. 
700 1 |a dos Santos Afonso, M. 
773 0 |d 2012  |g v. 213-214  |h pp. 123-132  |p J. Hazard. Mater.  |x 03043894  |w (AR-BaUEN)CENRE-5603  |t Journal of Hazardous Materials 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858335964&doi=10.1016%2fj.jhazmat.2012.01.073&partnerID=40&md5=6905f641c07c95fdb597fa75628cfe87  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jhazmat.2012.01.073  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03043894_v213-214_n_p123_Areco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043894_v213-214_n_p123_Areco  |y Registro en la Biblioteca Digital 
961 |a paper_03043894_v213-214_n_p123_Areco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70641