The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light

TiO2 photocatalytic and near-neutral photo-Fenton processes were tested under simulated solar light to degrade two models of natural organic matter - resorcinol (R) (which should interact strongly with TiO2 surfaces) and hydroquinone (H) - separately or in the presence of bacteria. Under similar oxi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Moncayo-Lasso, A.
Otros Autores: Mora-Arismendi, L.E, Rengifo-Herrera, J.A, Sanabria, J., Benítez, N., Pulgarin, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15412caa a22010097a 4500
001 PAPER-9664
003 AR-BaUEN
005 20230518203937.0
008 140217s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84860381136 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PPSHC 
100 1 |a Moncayo-Lasso, A. 
245 1 4 |a The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light 
260 |c 2012 
270 1 0 |m Benítez, N.; Universidad Del Valle, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A. A. 25360, Cali, Colombia; email: luis.benitez@correounivalle.edu.co 
506 |2 openaire  |e Política editorial 
504 |a Richardson, S.D., Ternes, T.A., Water analysis: Emerging contaminants and current issues (2005) Anal. Chem., 77, pp. 3807-3838 
504 |a Bond, T., Goslan, E.H., Parsons, S.A., Jefferson, B., Treatment of disinfection by-products precursors (2011) Environ. Technol., 32, pp. 1-25 
504 |a Lemarchand, K., Lebaron, P., Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: Relationship with fecal indicators (2003) FEMS Microbiology Letters, 218 (1), pp. 203-209. , DOI 10.1016/S0378-1097(02)01135-7, PII S0378109702011357 
504 |a Woolhouse, M.E.J., Haydon, D.T., Antia, R., Emerging pathogens: The epidemiology and evolution of species jumps (2005) Trends in Ecology and Evolution, 20 (5), pp. 238-244. , DOI 10.1016/j.tree.2005.02.009, Invasions 
504 |a (2006) Guidelines for Drinking-water Quality, pp. 221-294. , WHO, Microbial fact sheets, WHO, Geneva 
504 |a Moncayo-Lasso, A., Pulgarin, C., Benitez, N., Degradation of DBPs' precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor (2008) Water Res., 42, pp. 4125-4132 
504 |a Markowska-Szczupak, A., Ulfig, K., Morawski, A.W., The application of titanium dioxide for deactivation of bioparticulates: An overview (2011) Catal. Today, 169, pp. 249-257 
504 |a Ibanez, J.A., Litter, M.I., Pizarro, R.A., Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (-) bacteria (2003) Journal of Photochemistry and Photobiology A: Chemistry, 157 (1), pp. 81-85. , DOI 10.1016/S1010-6030(03)00074-1, PII S1010603003000741 
504 |a Cho, M., Chung, H., Choi, W., Yoon, J., Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection (2004) Water Research, 38 (4), pp. 1069-1077. , DOI 10.1016/j.watres.2003.10.029 
504 |a Coleman, H.M., Marquis, C.P., Scott, J.A., Chin, S.-S., Amal, R., Bactericidal effects of titanium dioxide-based photocatalysts (2005) Chemical Engineering Journal, 113 (1), pp. 55-63. , DOI 10.1016/j.cej.2005.07.015, PII S1385894705002494 
504 |a Cho, M., Lee, Y., Chung, H., Yoon, J., Inactivation of Escherichia coli by Photochemical Reaction of Ferrioxalate at Slightly Acidic and Near-Neutral pHs (2004) Applied and Environmental Microbiology, 70 (2), pp. 1129-1134. , DOI 10.1128/AEM.70.2.1129-1134.2004 
504 |a Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C., Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation (2007) Applied Catalysis B: Environmental, 76 (3-4), pp. 257-263. , DOI 10.1016/j.apcatb.2007.05.026, PII S092633730700166X 
504 |a Rincon, A.-G., Pulgarin, C., Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water (2006) Applied Catalysis B: Environmental, 63 (3-4), pp. 222-231. , DOI 10.1016/j.apcatb.2005.10.009, PII S0926337305003772 
504 |a Byrne, J.A., Fernández-Ibañez, P.A., Dunlop, P.S.M., Alrousan, D.M.A., Hamilton, J.W.J., Photocatalytic enhancement for solar disinfection of water: A review (2011) Int. J. Photoenergy, p. 798051. , 10.1155/2011/798051 
504 |a Sciacca, F., Rengifo-Herrera, J.A., Wéthé, J., Pulgarin, C., Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron (2010) Chemosphere, 78, pp. 1186-1191 
504 |a Spuhler, D., Rengifo-Herrera, J.A., Pulgarin, C., The effect of Fe2+, Fe3+, H2O 2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K-12 (2010) Appl. Catal., B, 96, pp. 126-141 
504 |a Rincon, A.-G., Pulgarin, C., Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Implications in solar disinfection at low temperature of large quantities of water (2007) Catalysis Today, 122 (1-2), pp. 128-136. , DOI 10.1016/j.cattod.2007.01.028, PII S0920586107000521 
504 |a Linsebigler, A.L., Lu, G., Yates, J.T., Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results (1995) Chem. Rev., 95, pp. 735-758 
504 |a Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis (1995) Chem. Rev., 95, pp. 69-69 
504 |a Mills, A., Davies, R., Worsley, D., Water purification by semiconductor photocatalysis (1993) Chem. Soc. Rev., 22, pp. 417-426 
504 |a Fujishima, A., Zhang, X., Tryk, D.T., TiO2 photocatalysis and related surface phenomena (2008) Surf. Sci. Rep., 63, pp. 515-582 
504 |a Bandara, J., Pulgarin, C., Peringer, P., Kiwi, J., Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor (1997) Journal of Photochemistry and Photobiology A: Chemistry, 111 (1-3), pp. 253-263. , PII S1010603097002499 
504 |a Pulgarin, C., Kiwi, J., Overview of photocatalytic and electrocatalytic pretreatment of industrial non-biodegradable pollutants and pesticides (1996) Chimia, 50, pp. 50-56 
504 |a Sun, Y., Pignatello, J.J., Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV (1993) Environmental Science and Technology, 27 (2), pp. 304-310 
504 |a Fallmann, H., Krutzler, T., Bauer, R., Malato, S., Blanco, J., Applicability of the Photo-Fenton method for treating water containing pesticides (1999) Catalysis Today, 54 (2-3), pp. 309-319. , PII S0920586199001923, Solar Catalysis for Water Decontamination 
504 |a Pignatello, J.J., Oliveros, E., MacKay, A., Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry (2006) Critical Reviews in Environmental Science and Technology, 36 (1), pp. 1-84. , DOI 10.1080/10643380500326564 
504 |a Herrera, F., Pulgarin, C., Nadtochenko, V., Kiwi, J., Accelerated photo-oxidation of concentrated p-coumaric acid in homogeneous solution. Mechanistic studies, intermediates and precursors formed in the dark (1998) Applied Catalysis B: Environmental, 17 (1-2), pp. 141-156. , DOI 10.1016/S0926-3373(98)00008-3, PII S0926337398000083 
504 |a Bond, T., Goslan, E.H., Parsons, S.A., Jefferson, B., Treatment of disinfection by-product precursors (2011) Environ. Technol., 32, pp. 1-25 
504 |a Rincon, A.-G., Pulgarin, C., Effect of pH, inorganic ions, organic matter and H2O 2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection (2004) Applied Catalysis B: Environmental, 51 (4), pp. 283-302. , DOI 10.1016/j.apcatb.2004.03.007, PII S0926337304001663 
504 |a Gulley-Stahl, H., Hogan, I.I.P.A., Schmidt, W.L., Wall, S.J., Buhrlage, A., Bullen, H.A., Surface complexation of catechol to metal oxides: An ATR-FTIR adsorption and dissolution study (2010) Environ. Sci. Technol., 44, pp. 4116-4121 
504 |a Arana, J., Rodriguez, J.M.D., Diaz, O.G., Melian, J.A.H., Rodriguez, C.F., Pena, J.P., The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol (2006) Applied Catalysis A: General, 299 (1-2), pp. 274-284. , DOI 10.1016/j.apcata.2005.10.056, PII S0926860X05008124 
504 |a Xu, W., Raftery, D., Photocatalytic oxidation of 2-propanol on TiO2 powder and TiO2 monolayer catalysts studied by solid-state NMR (2001) J. Phys. Chem. B, 105, pp. 4343-4349 
504 |a Enriquez, R., Pichat, P., Different net effect of TiO2 sintering temperature on the photocatalytic removal rates of 4-chlorophenol, 4-chlorobenzoic acid and dichloroacetic acid in water (2006) Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41 (6), pp. 955-966. , DOI 10.1080/10934520600689233, PII H213X3734507232 
504 |a Rincon, A.G., Pulgarin, C., Adler, N., Peringer, P., Interaction between E. coli inactivation and DBP-precursors - dihydroxybenzene isomers - in the photocatalytic process of drinking-water disinfection with TiO2 (2001) Journal of Photochemistry and Photobiology A: Chemistry, 139 (2-3), pp. 233-241. , PII S1010603001003744 
504 |a Alrousan, D.M.A., Dunlop, P.S.M., McMurray, T.A., Byrne, J.A., Photocatalytic inactivation of E. coli in surface water using immobilized nanoparticle TiO2 films (2009) Water Res., 43, pp. 47-54 
504 |a Berney, M., Weilenmann, H.-U., Simonetti, A., Egli, T., Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae (2006) Journal of Applied Microbiology, 101 (4), pp. 828-836. , DOI 10.1111/j.1365-2672.2006.02983.x 
504 |a Gumy, D., Morais, C., Bowen, P., Pulgarin, C., Giraldo, S., Hajdu, R., Kiwi, J., Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point (2006) Applied Catalysis B: Environmental, 63 (1-2), pp. 76-84. , DOI 10.1016/j.apcatb.2005.09.013, PII S0926337305003346 
504 |a Fang, L., Cai, P., Chen, W., Liang, W., Hong, Z., Huang, Q., Impact of cell wall structure on the behaviour of bacterial cells in the binding of cooper and cadmium (2009) Colloids Surf., A, 347, pp. 50-55 
504 |a Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C., Dukan, S., The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity (2006) FEMS Microbiol. Lett., 258, pp. 18-24 
504 |a Guillard, C., Bui, T.-H., Felix, C., Moules, V., Lina, B., Lejeune, P., Microbiological disinfection of water and air by photocatalysis (2008) C. R. Chim., 11, pp. 107-113 
504 |a Sylva, R.N., The hydrolysis of iron(iii) (1972) Rev. Pure Appl. Chem., 22, pp. 115-130 
504 |a Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends (2009) Catal. Today, 147, pp. 1-59 
504 |a Gallard, H., De Laat, J., Legube, B., Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions (1999) Water Research, 33 (13), pp. 2929-2936. , DOI 10.1016/S0043-1354(99)00007-X, PII S004313549900007X 
504 |a Lee, C., Yoon, J., Determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes in aqueous solution using a novel kinetic method (2004) Chemosphere, 57 (10), pp. 1449-1458. , DOI 10.1016/j.chemosphere.2004.07.052, PII S0045653504006678 
520 3 |a TiO2 photocatalytic and near-neutral photo-Fenton processes were tested under simulated solar light to degrade two models of natural organic matter - resorcinol (R) (which should interact strongly with TiO2 surfaces) and hydroquinone (H) - separately or in the presence of bacteria. Under similar oxidative conditions, inactivation of Escherichia coli, Shigella sonnei and Salmonella typhimurium was carried out in the absence and in the presence of 10 mg L-1 of R and H. The 100% abatement of R and H by using a TiO2 photocatalytic process in the absence of bacteria was observed in 90 min for R and in 120 min for H, while in the presence of microorganisms abatement was only of 55% and 35% for R and H, respectively. Photo-Fenton reagent at pH 5.0 completely removed R and H in 40 min, whereas in the presence of microorganisms their degradation was of 60% to 80%. On the other hand, 2 h of TiO2 photocatalytic process inactivated S. typhimurium and E. coli cells in three and six orders of magnitude, respectively, while S. sonnei was completely inactivated in 10 min. In the presence of R or H, the bacterial inactivation via TiO2 photocatalysis was significantly decreased. With photo-Fenton reagent at pH 5 all the microorganisms tested were completely inactivated in 40 min of simulated solar light irradiation in the absence of organics. When R and H were present, bacterial photo-Fenton inactivation was less affected. The obtained results suggest that in both TiO2 and iron photo-assisted processes, there is competition between organic substances and bacteria simultaneously present for generated reactive oxygen species (ROS). This competition is most important in heterogeneous systems, mainly when there are strong organic-TiO2 surface interactions, as in the resorcinol case, suggesting that bacteria-TiO 2 interactions could play a key role in photocatalytic cell inactivation processes. © The Royal Society of Chemistry and Owner Societies 2012.  |l eng 
593 |a Universidad Del Valle, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A. A. 25360, Cali, Colombia 
593 |a Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA), Departamento de Química, CONICET, Calle 47 No. 257, 1900 La Plata, Buenos Aires, Argentina 
593 |a Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering, GGEC Station 6, CH-1015 Lausanne, Switzerland 
593 |a Facultad de Ciencias Naturales y Exactas, Departamento de Química, Portugal 
593 |a Escuela de Ingeniería de Recursos Naturales y Del Ambiente (EIDENAR), Colombia 
690 1 0 |a BACTERIA (MICROORGANISMS) 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a SALMONELLA 
690 1 0 |a SALMONELLA TYPHIMURIUM 
690 1 0 |a SHIGELLA 
690 1 0 |a SHIGELLA SONNEI 
700 1 |a Mora-Arismendi, L.E. 
700 1 |a Rengifo-Herrera, J.A. 
700 1 |a Sanabria, J. 
700 1 |a Benítez, N. 
700 1 |a Pulgarin, C. 
773 0 |d 2012  |g v. 11  |h pp. 821-827  |k n. 5  |p Photochem. Photobiol. Sci.  |x 1474905X  |t Photochemical and Photobiological Sciences 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84860381136&partnerID=40&md5=04650622fa85d8a73681063689eeca9f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c2pp05290c  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1474905X_v11_n5_p821_MoncayoLasso  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v11_n5_p821_MoncayoLasso  |y Registro en la Biblioteca Digital 
961 |a paper_1474905X_v11_n5_p821_MoncayoLasso  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70617