CO2 emissions from a municipal site for final disposal of solid waste in Gualeguaychu, Entre Rios Province, Argentina

This paper estimates CO2 fluxes in a municipal site for final disposal of solid waste, located in Gualeguaychu, Argentina. Estimations were made using the accumulation chamber methods, which had been calibrated previously in laboratory. CO2 fluxes ranged from 31 to 331 g m-2 day-1. Three different p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sanci, R.
Otros Autores: Panarello, H.O, Ostera, H.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15130caa a22014177a 4500
001 PAPER-9660
003 AR-BaUEN
005 20230518203936.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84860363024 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Sanci, R. 
245 1 0 |a CO2 emissions from a municipal site for final disposal of solid waste in Gualeguaychu, Entre Rios Province, Argentina 
260 |c 2012 
270 1 0 |m Sanci, R.; Instituto de Geocronología y Geología Isotópica, Univ. de Buenos Aires,Consejo Nacional de Investigaciones Cientificas y Tecnicas,Pabellon INGEIS, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina; email: romina@ingeis.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Baedecker, M.J., Back, W., Hydrogeological processes and chemical reactions at a landfill (1979) Ground Water, 17 (5), pp. 429-437 
504 |a Barlaz, M.A., Green, R.B., Chanton, J.P., Goldsmith, C.D., Hater, G.R., Evaluation of a biologically active cover for mitigation of landfill gas emissions (2004) Environ Sci Technol, 38, pp. 4891-4899 
504 |a Bergfeld, D., Goff, F., Janik, C.J., Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir (2001) Chem Geol, 177, pp. 43-66 
504 |a Bjerg, P.L., Albrechtsen, H.J., Kjeldsen, P., Christensen, T.H., The groundwater geochemistry of waste disposal facilities (2005) Environmental Geochemistry Vol. 9 Treatise on Geochemistry, pp. 579-612. , B. Sherwood Lollar (Ed.), Oxford: Elsevier-Pergamon 
504 |a Börjesson, G., Danielson, A., Svensson, B.H., Methane fluxes from a Swedish landfill determined by geostatistical treatment of static chamber measurements (2000) Environ Sci Technol, 34, pp. 4044-4050 
504 |a Butnor, J.R., Johnsen, K.H., Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity (2004) Eur J Soil Sci, 55, pp. 639-647 
504 |a Cardellini, C., Chiodini, G., Frondini, F., Granieri, D., Lewicki, J., Peruzzi, L., Accumulation chamber measurement of methane fluxes: application to volcanic-geothermal areas and landfills (2003) Appl Geochem, 18, pp. 45-54 
504 |a Chiodini, G., Frondini, F., Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy (2001) Chem Geol, 177, pp. 67-83 
504 |a Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., Soil CO2 flux measurement in volcanic and geothermal areas (1998) Appl Geochem, 13 (5), pp. 543-552 
504 |a Coleman, D.D., Liu, C.L., Hacley, K.C., Benson, L.J., Identification of landfill methane using carbon and hydrogen isotope analysis (1993) Proceedings of 16th International Madison Waste Conference, pp. 303-314. , Municipal & Industrial Waste, Department of Engineering Professional Development, University of Wisconsin, Madison 
504 |a Eddy, W.A., Paninatier, Y., (1996) Variowin: Software for Spatial Data Analysis in 2-D, , New York: Springer 
504 |a Evans, C.W., Sorey, M.L., Kennedy, B.M., Stonnestrom, D.A., Rogie, J.D., Shuster, D.L., High CO2 emissions through porous media: transport mechanisms and implications for flux measurement and fractionation (2001) Chem Geol, 177, pp. 15-29 
504 |a Farquar, G.J., Rovers, F.A., Gas production during refuse decomposition (1973) Water Air Soil Pollut, 2, pp. 483-495 
504 |a Farquhar, M., Leachate: production and characterization (1989) Can J Civ Eng, 16, pp. 317-325 
504 |a Georgaki, I., Soupios, P., Sacas, N., Ververidis, F., Trantas, E., Vallianatos, F., Manios, T., Evaluating the use of electrical resistivity imaging technique for improving CH4 and CO2 emission rate estimations in landfills (2008) Sci Total Environ, 389, pp. 522-531 
504 |a Gerlach, T.M., Doukas, M.P., McGee, K.A., Kessler, R., Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain, California, 1995-1999 (2001) Chem Geol, 177, pp. 101-116 
504 |a Gonfiantini, R., Stichler, W., Rozanski, K., Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements (1995) Proceedings of a consultants meeting of reference and intercomparison materials for stable isotopes of light elements, pp. 13-29. , IAEA, Vienna 
504 |a Hackley, K.C., Liu, C.L., Coleman, D.D., Environmental isotope characteristics of landfill leachates and gases (1996) Ground Water, 34 (5), pp. 827-836 
504 |a Hedge, U., Chang, T.C., Yang, S.S., Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan (2003) Chemosphere, 52, pp. 1275-1285 
504 |a Iriondo, M., El Cuaternario de Entre Ríos (1980) Rev Asoc Cienc Nat Litoral, 11, pp. 125-141 
504 |a Iriondo, M.H., Estratigrafía del Cuaternario de la cuenca del río Uruguay (1996) Actas del XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, IV, pp. 15-25. , AGA-IAPG, Buenos Aires 
504 |a Jha, A.K., Sharma, C., Singh, N., Ramesh, R., Purvaja, R., Gupta, P.K., Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites (2008) Chemosphere, 71, pp. 750-758 
504 |a Kerfoot, H.B., Baker, J.A., Burt, D.M., Geochemical changes on ground water due to landfill gas effects (2004) Ground Water Monit Rem, 24 (1), pp. 60-65 
504 |a Kumar, S., Mondal, A.N., Gaikwad, S.A., Devotta, S., Singh, R.N., Qualitative assessment of methane emission inventory from municipal solid waste disposal: a case study (2004) Atmos Environ, 38, pp. 4921-4929 
504 |a Maccrea, J.M., On the isotopic chemistry of carbonates and paleotemperature scale (1950) J Chem Phys, 18 (6), pp. 849-857 
504 |a Martin, J.G., Bolstad, P.V., Norman, J.M., A carbon dioxide flux generator for testing infrared gas analyser based soil respiration systems (2004) Soil Sci Soc Am J, 68, pp. 514-518 
504 |a Meju, M.A., Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: mode development with a genetic diagnosis approach (2000) J Appl Geophys, 44, pp. 115-150 
504 |a Mook, W.G., Environmental isotopes in the hydrological cycle (2000) Principles and Applications, I, pp. 96-101. , W. G. Mook (Ed.), Paris: UNESCO 
504 |a Mosher, B.W., Czepiel, P.M., Harriss, R.C., Methane emissions at nine landfill sites in the northeastearn United States (1999) Environ Sci Technol, 33, pp. 2088-2094 
504 |a Nay, S.M., Matsson, K.G., Bormann, B.T., Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus (1994) Ecology, 75, pp. 2460-2463 
504 |a Norman, J.M., Kucharik, C.J., Gower, S.T., Baldocchi, D.D., Crill, P.M., Rayment, M., Savage, K., Striegl, R.G., A comparison of six methods for measuring soil-surface carbon dioxide fluxes (1997) J Geophys Res, 102, pp. 28771-28777 
504 |a North, J.C., Rusell, D.F., Barrie, M.P., The use of carbon and nitrogen isotope ratios to identify landfill leachate contamination: Green Island Landfill, Dunedin, New Zealand (2004) Environ Int, 30, pp. 631-637 
504 |a Parkhurst, D.L., Appelo, C.A.J., (1999) User's Guide to PHREEQC-a Computer Program for Speciation, Batch Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, , Denver: Water Resour Invest Rep 99-4259 US Geol Surv 
504 |a Pereyra, F., Tchilinguirian, P., Baumann, V., (2002) Hoja Geológica 3360-IV Gualeguaychú, , Boletín No 335, Servicio Geológico Minero Argentino, Buenos Aires 
504 |a Pier, P.A., Kelly, J.M., Measured and estimated methane and carbon dioxide emissions from sawdust waste in the Tennessee Valley under alternative management strategies (1997) Bioresour Technol, 61, pp. 213-220 
504 |a Pomposiello, C., Dapeña, C., Boujon, P., Favetto, A., Tomografías eléctricas en el Basurero Municipal Ciudad de Gualeguaychú, provincia de Entre Ríos. Evidencias de contaminación (2009) Rev Asoc Geol Arg, 64, pp. 603-614 
504 |a Prezzi, C., Orgeira, M.J., Ostera, H.A., Vazquez, C.A., Ground magnetic survey of a municipal solid waste landfill: pilot study in Argentina (2005) Environ Geol, 47 (7), pp. 889-897 
504 |a Pumpanen, J., Kolari, P., Lvesniemi, H., Minkkinen, K., Vesala, N., Lohila, A., Larmola, T., Hari, P., Comparison of different chamber techniques for measuring soil CO2 efflux (2004) Agric For Meteorol, 123, pp. 159-176 
504 |a Sanci, R., Panarello, H.O., Ostera, H., Assessment of soil moisture influence on CO2 flux: a laboratory experiment (2009) Environ Geol, 58, pp. 491-497 
504 |a Sanci, R., Ostera, H., Panarello, H.O., Determinación del flujo de CO2 en antrópicas: sitio de disposición final municipal, Gualeguaychú, Entre Ríos (2009) Rev Asoc Geol Arg, 65 (3), pp. 533-544 
504 |a (2004) Guidance on the management of landfill gas, , http://www.sepa.org.uk/waste/waste_regulation/landfill.aspx, SEPA, Scottish Environment Protection Agency., Online at 
504 |a Spokas, K., Graff, C., Morcet, M., Aran, C., Implications of the spatial variability of landfill emission rates on geospatial analyses (2003) Waste Manage, 23, pp. 599-607 
504 |a Spokas, K., Bogner, J., Chanton, J.P., Morcet, M., Aran, C., Graff, C., Moreau-Le Golvan, Y., Hebe, I., Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? (2006) Waste Manage, 26 (5), pp. 516-525 
504 |a Stumm, W., Morgan, J.J., (1996) Aquatic Chemistry, p. 357. , New York: Environmental Science and Technology 
504 |a Taylor, C.B., Fox, V.J., An isotopic study of dissolved inorganic carbon in the catchment of the Waimakariri River and deep ground water of the North Canterbury Plains, New Zealand (1996) J Hydrol, 186, pp. 161-190 
504 |a Thornthwaite, C.W., Matter, J.R., Instructions and tables for computing potential evapotranspiration and the water balance (1957) Drexler Inst Tech Clim, 10, pp. 185-311 
504 |a van Breukelen, B.M., Roling, F.M., Groen, J., Griffioen, J., van Verseveld, H.W., Biogeochemistry and isotope geochemistry of a landfill leachate plume (2003) J Contam Hydrol, 65, pp. 245-268 
504 |a Wang, X.J., Qi, F., The effects of sampling design on spatial structure analysis of contaminated soil (1998) Sci Total Environ, 224, pp. 29-41 
504 |a Webster, R., Oliver, M.A., Sample adequately to estimate variograms of soil properties (1992) J Soil Sci, 43, pp. 177-192 
504 |a Welles, J.M., Demetriades-Shah, T.H., McDermitt, D.K., Considerations for measuring ground CO2 effluxes with chambers (2001) Chem Geol, 177, pp. 3-13 
504 |a Widén, B., Lindroth, A., A calibration system for soil carbon dioxide-efflux measurements chambers: description and application (2003) Soil Sci Soc Am J, 67, pp. 327-334 
520 3 |a This paper estimates CO2 fluxes in a municipal site for final disposal of solid waste, located in Gualeguaychu, Argentina. Estimations were made using the accumulation chamber methods, which had been calibrated previously in laboratory. CO2 fluxes ranged from 31 to 331 g m-2 day-1. Three different populations were identified: background soil gases averaging 46 g m-2 day-1, intermediate anomalous values averaging 110 g m-2 day-1 and high anomalous values averaging 270 g m-2 day-1. Gas samples to a depth of 20 cm were also taken. Gas fractions, XCO2 <0.1, XCH4 <0.01, XN2 ~0. 71 and XO2 ~0. 21, δ13C of CO2 (-34 to -18‰), as well as age of waste emplacement, suggest that the study site may be at the final stage of aerobic biodegradation. In a first approach, and following the downstream direction of groundwater flow, alkalinity and δ13C of dissolved inorganic carbon (-15 to 4‰) were observed to increase when groundwater passed through the disposal site. This suggests that the CO2 generated by waste biodegradation dissolves or that dissolved organic matter appears as a result of leachate degradation. © 2011 Springer-Verlag.  |l eng 
536 |a Detalles de la financiación: PICT, 12243 
536 |a Detalles de la financiación: Acknowledgments This research was supported by the Instituto de Geocronología y Geología Isotópica (UBA-CONICET) and PICT 2002 No 12243. The authors are grateful to Eduardo Llambías, Anibal Tricarico and Gabriel Giordarengo for their collaboration in the field. 
593 |a Instituto de Geocronología y Geología Isotópica, Univ. de Buenos Aires,Consejo Nacional de Investigaciones Cientificas y Tecnicas,Pabellon INGEIS, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina 
690 1 0 |a CARBON ISOTOPES 
690 1 0 |a CO2 FLUXES 
690 1 0 |a DIC GROUNDWATER 
690 1 0 |a SOLID WASTE 
690 1 0 |a AEROBIC BIODEGRADATION 
690 1 0 |a CARBON ISOTOPES 
690 1 0 |a DISPOSAL SITES 
690 1 0 |a DISSOLVED INORGANIC CARBON 
690 1 0 |a DISSOLVED ORGANIC MATTERS 
690 1 0 |a GAS FRACTION 
690 1 0 |a GAS SAMPLES 
690 1 0 |a LEACHATES 
690 1 0 |a SOIL GAS 
690 1 0 |a STUDY SITES 
690 1 0 |a WASTE BIODEGRADATION 
690 1 0 |a BIODEGRADATION 
690 1 0 |a GROUNDWATER 
690 1 0 |a GROUNDWATER FLOW 
690 1 0 |a ISOTOPES 
690 1 0 |a MUNICIPAL SOLID WASTE 
690 1 0 |a SOLID WASTES 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a BIODEGRADATION 
690 1 0 |a CALIBRATION 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a CARBON EMISSION 
690 1 0 |a CARBON FLUX 
690 1 0 |a CARBON ISOTOPE 
690 1 0 |a DISSOLVED INORGANIC CARBON 
690 1 0 |a DISSOLVED ORGANIC MATTER 
690 1 0 |a GROUNDWATER FLOW 
690 1 0 |a LEACHATE 
690 1 0 |a MUNICIPAL SOLID WASTE 
690 1 0 |a SOIL GAS 
690 1 0 |a WASTE DISPOSAL 
690 1 0 |a GUALEGUAYCHU 
651 4 |a ARGENTINA 
651 4 |a ARGENTINA 
651 4 |a ENTRE RIOS 
700 1 |a Panarello, H.O. 
700 1 |a Ostera, H.A. 
773 0 |d 2012  |g v. 66  |h pp. 519-528  |k n. 2  |p Environ. Earth Sci.  |x 18666280  |t Environmental Earth Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860363024&doi=10.1007%2fs12665-011-1260-0&partnerID=40&md5=6baed156529e2e6b3ed798d30623362a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s12665-011-1260-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_18666280_v66_n2_p519_Sanci  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18666280_v66_n2_p519_Sanci  |y Registro en la Biblioteca Digital 
961 |a paper_18666280_v66_n2_p519_Sanci  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70613