A posteriori error estimates for non-conforming approximation of eigenvalue problems

We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix-Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the err...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dari, E.A
Otros Autores: Durán, R.G, Padra, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix-Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom. © 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Bibliografía:Acosta, G., Durán, R.G., Error estimator for a mixed method (1996) Numer. Math., 74, pp. 385-395
Ainsworth, M., Robust a posteriori error estimation for nonconforming finite element approximation (2005) SIAM Journal on Numerical Analysis, 42 (6), pp. 2320-2341. , DOI 10.1137/S0036142903425112
Alonso, A., Error estimator for a mixed method (1996) Numer. Math., 74, pp. 385-395
Armentano, M.G., Duran, R.G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods (2004) Electronic Transactions on Numerical Analysis, 17, pp. 93-101. , http://etna.mcs.kent.edu/vol.17.2004/pp93-101.dir/pp93-101.pdf
Arnold, D.N., Brezzi, F., Mixed and nonconforming finite element methods implementation, postprocessing and error estimates (1985) R.A.I.R.O., Modél. Math. Anal. Numer., 19, pp. 7-32
Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M., Finite elements, compatibility conditions, and applications (1939) Lecture Notes in Mathematics, , D. Boffi, Lucia Gastaldi, Springer-Verlag Berlin
Bogdan, K., Sharp estimates for the green function in Lipschitz domains (2000) J. Math. Anal. Appl., 243, pp. 326-337
Carstensen, C., A posteriori error estimate for the mixed finite element method (1997) Math. Comp., 66, pp. 465-476
Crouzeix, M., Raviart, P.A., Conforming and non-conforming finite element methods for solving the stationary Stokes equations (1973) R.A.I.R.O. Anal. Numer., 7, pp. 33-76
Dari, E., Durán, R.G., Padra, C., Vampa, V., A posteriori error estimators for nonconforming finite element methods (1996) Math. Model. Numer. Anal., 30, pp. 385-400
Dauge, M., Problémes de Neumann et de Dirichlet sur un polyédre dans R 3: Regularité dans des espaces de Sobolev Lp (1988) C. R. Acad. Sci. Paris i, 307, pp. 27-32
Durán, R.G., Padra, C., An error estimator for nonconforming approximations of a nonlinear problem (1994) Finite Element Methods, Fifty Years of the Courant Element, pp. 201-205. , M. Krizek, P. Neittaanmaki, R. Stenberg, Marcel Dekker
Marini, L.D., An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method (1985) SIAM J. Numer. Anal., 22, pp. 493-496
Raviart, P.A., Thomas, J.M., (1983) Introduction À LAnalyse Numérique des Equations Aux Dérivées Partielles, , Masson
Rivara, M.C., Algorithms for refining triangular grid suitable for adaptive and multigrid techniques (1984) International Journal for Numerical Methods in Engineering, 20 (4), pp. 745-756
Rivara, M.C., Mesh refinement processes based on the generalized bisection of simplices (1984) SIAM J. Numer. Anal., 21, pp. 604-613
ISSN:01689274
DOI:10.1016/j.apnum.2012.01.005