A posteriori error estimates for non-conforming approximation of eigenvalue problems

We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix-Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the err...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dari, E.A
Otros Autores: Durán, R.G, Padra, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06996caa a22008417a 4500
001 PAPER-9656
003 AR-BaUEN
005 20230518203936.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84857921993 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ANMAE 
100 1 |a Dari, E.A. 
245 1 2 |a A posteriori error estimates for non-conforming approximation of eigenvalue problems 
260 |c 2012 
270 1 0 |m Padra, C.; Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, CONICET, R8402AGP Bariloche, Argentina; email: padra@cab.cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Acosta, G., Durán, R.G., Error estimator for a mixed method (1996) Numer. Math., 74, pp. 385-395 
504 |a Ainsworth, M., Robust a posteriori error estimation for nonconforming finite element approximation (2005) SIAM Journal on Numerical Analysis, 42 (6), pp. 2320-2341. , DOI 10.1137/S0036142903425112 
504 |a Alonso, A., Error estimator for a mixed method (1996) Numer. Math., 74, pp. 385-395 
504 |a Armentano, M.G., Duran, R.G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods (2004) Electronic Transactions on Numerical Analysis, 17, pp. 93-101. , http://etna.mcs.kent.edu/vol.17.2004/pp93-101.dir/pp93-101.pdf 
504 |a Arnold, D.N., Brezzi, F., Mixed and nonconforming finite element methods implementation, postprocessing and error estimates (1985) R.A.I.R.O., Modél. Math. Anal. Numer., 19, pp. 7-32 
504 |a Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M., Finite elements, compatibility conditions, and applications (1939) Lecture Notes in Mathematics, , D. Boffi, Lucia Gastaldi, Springer-Verlag Berlin 
504 |a Bogdan, K., Sharp estimates for the green function in Lipschitz domains (2000) J. Math. Anal. Appl., 243, pp. 326-337 
504 |a Carstensen, C., A posteriori error estimate for the mixed finite element method (1997) Math. Comp., 66, pp. 465-476 
504 |a Crouzeix, M., Raviart, P.A., Conforming and non-conforming finite element methods for solving the stationary Stokes equations (1973) R.A.I.R.O. Anal. Numer., 7, pp. 33-76 
504 |a Dari, E., Durán, R.G., Padra, C., Vampa, V., A posteriori error estimators for nonconforming finite element methods (1996) Math. Model. Numer. Anal., 30, pp. 385-400 
504 |a Dauge, M., Problémes de Neumann et de Dirichlet sur un polyédre dans R 3: Regularité dans des espaces de Sobolev Lp (1988) C. R. Acad. Sci. Paris i, 307, pp. 27-32 
504 |a Durán, R.G., Padra, C., An error estimator for nonconforming approximations of a nonlinear problem (1994) Finite Element Methods, Fifty Years of the Courant Element, pp. 201-205. , M. Krizek, P. Neittaanmaki, R. Stenberg, Marcel Dekker 
504 |a Marini, L.D., An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method (1985) SIAM J. Numer. Anal., 22, pp. 493-496 
504 |a Raviart, P.A., Thomas, J.M., (1983) Introduction À LAnalyse Numérique des Equations Aux Dérivées Partielles, , Masson 
504 |a Rivara, M.C., Algorithms for refining triangular grid suitable for adaptive and multigrid techniques (1984) International Journal for Numerical Methods in Engineering, 20 (4), pp. 745-756 
504 |a Rivara, M.C., Mesh refinement processes based on the generalized bisection of simplices (1984) SIAM J. Numer. Anal., 21, pp. 604-613 
520 3 |a We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix-Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom. © 2012 IMACS. Published by Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X070 
536 |a Detalles de la financiación: Universidad Nacional de Cuyo, 06-C319, 06-C287 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 01307 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220090100625 
536 |a Detalles de la financiación: This research was supported by ANPCyT (grant PICT 01307), by Universidad de Buenos Aires (grant X070), by CONICET (grant PIP 11220090100625) and by Universidad Nacional de Cuyo (grants 06-C287 and 06-C319). 
593 |a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, CONICET, R8402AGP Bariloche, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, 1428 Buenos Aires, Argentina 
690 1 0 |a A POSTERIORI ERROR ESTIMATORS 
690 1 0 |a EIGENVALUE PROBLEMS 
690 1 0 |a NON-CONFORMING FINITE ELEMENTS 
690 1 0 |a A-POSTERIORI ERROR ESTIMATES 
690 1 0 |a ADAPTIVE PROCEDURE 
690 1 0 |a EIGEN-VALUE 
690 1 0 |a EIGENVALUE PROBLEM 
690 1 0 |a EIGENVALUES 
690 1 0 |a ENERGY NORM 
690 1 0 |a ERROR ESTIMATORS 
690 1 0 |a HIGHER ORDER TERMS 
690 1 0 |a LAPLACIANS 
690 1 0 |a NON-CONFORMING FINITE ELEMENTS 
690 1 0 |a NONCONFORMING FINITE ELEMENT 
690 1 0 |a NUMBER OF DEGREES OF FREEDOM 
690 1 0 |a NUMERICAL EXAMPLE 
690 1 0 |a POSTERIORI ERROR ESTIMATOR 
690 1 0 |a THREE DIMENSIONS 
690 1 0 |a UPPER BOUND 
690 1 0 |a ERROR ANALYSIS 
690 1 0 |a SWITCHING SYSTEMS 
690 1 0 |a EIGENVALUES AND EIGENFUNCTIONS 
700 1 |a Durán, R.G. 
700 1 |a Padra, C. 
773 0 |d 2012  |g v. 62  |h pp. 580-591  |k n. 5  |p Appl Numer Math  |x 01689274  |w (AR-BaUEN)CENRE-3774  |t Applied Numerical Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857921993&doi=10.1016%2fj.apnum.2012.01.005&partnerID=40&md5=48939d8d308eba28aefa12a4d65d7854  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.apnum.2012.01.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01689274_v62_n5_p580_Dari  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01689274_v62_n5_p580_Dari  |y Registro en la Biblioteca Digital 
961 |a paper_01689274_v62_n5_p580_Dari  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70609