Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions

Cell movement and intercellular signaling occur simultaneously during the development of tissues, but little is known about how movement affects signaling. Previous theoretical studies have shown that faster moving cells favor synchronization across a population of locally coupled genetic oscillator...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Uriu, K.
Otros Autores: Ares, S., Oates, A.C, Morelli, L.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13665caa a22011057a 4500
001 PAPER-9601
003 AR-BaUEN
005 20230518203933.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84861117946 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Uriu, K. 
245 1 0 |a Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions 
260 |c 2012 
270 1 0 |m Uriu, K.; Theoretical Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; email: uriu@mpi-cbg.de 
506 |2 openaire  |e Política editorial 
504 |a Andersson, E.R., Sandberg, R., Lendahl, U., Notch signaling: Simplicity in design, versatility in function (2011) Development, 138 (17), pp. 3593-3612. , 10.1242/dev.063610 0950-1991 
504 |a Pitulescu, M.E., Adams, R.H., Eph/ephrin molecules - A hub for signaling and endocytosis (2010) Genes Dev., 24 (22), pp. 2480-2492. , 10.1101/gad.1973910 0890-9369 
504 |a Stepniak, E., Radice, G.L., Vasioukhin, V., Adhesive and signaling functions of cadherins and catenins in vertebrate development (2009) Cold Spring Harb. Perspect. Biol., 1 (5), p. 002949. , 10.1101/cshperspect.a002949 1943-0264 
504 |a Friedl, P., Gilmour, D., Collective cell migration in morphogenesis, regeneration and cancer (2009) Nature Rev. Mol. Cell Biol., 10 (7), pp. 445-457. , 10.1038/nrm2720 1471-0072 
504 |a Solnica-Krezel, L., Conserved patterns of cell movements during vertebrate gastrulation (2005) Current Biology, 15 (6), pp. R213-R228. , DOI 10.1016/j.cub.2005.03.016 
504 |a Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H., Noise-resistant and synchronized oscillation of the segmentation clock (2006) Nature, 441 (7094), pp. 719-723. , DOI 10.1038/nature04861, PII N04861 
504 |a Jiang, Y.J., Aerne, B.L., Smithers, L., Haddon, C., Ish-Horowicz, D., Lewis, J., Notch signalling and the synchronization of the somite segmentation clock (2000) Nature, 408 (6811), pp. 475-479. , 10.1038/35044091 0028-0836 
504 |a Ozbudak, E.M., Lewis, J., Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries (2008) PLoS Genetics, 4 (2). , http://www.plosgenetics.org/article/fetchObjectAttachment.action?uri= info%3Adoi%2F10.1371%2Fjournal.pgen.0040015&representation=PDF, DOI 10.1371/journal.pgen.0040015 
504 |a Riedel-Kruse, I.H., Muller, C., Oates, A.C., Synchrony dynamics during initiation, failure, and rescue of the segmentation clock (2007) Science, 317 (5846), pp. 1911-1915. , DOI 10.1126/science.1142538 
504 |a Bénazéraf, B., Francois, P., Baker, R.E., Denans, N., Little, C.D., Pourquié, O., A random cell motility gradient downstream of FGF controls elongation of an amniote embryo (2010) Nature, 466 (7303), pp. 248-252. , 10.1038/nature09151 0028-0836 
504 |a Delfini, M.-C., Dubrulle, J., Malapert, P., Chal, J., Pourquie, O., Control of the segmentation process by graded MAPK/ERK activation in the chick embryo (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (32), pp. 11343-11348. , DOI 10.1073/pnas.0502933102 
504 |a Mara, A., Schroeder, J., Chalouni, C., Holley, S.A., Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC (2007) Nature Cell Biology, 9 (5), pp. 523-530. , DOI 10.1038/ncb1578, PII NCB1578 
504 |a Oates, A.C., Morelli, L.G., Ares, S., Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock (2012) Development, 139 (4), pp. 625-639. , 10.1242/dev.063735 0950-1991 
504 |a Pourquié, O., Vertebrate segmentation: From cyclic gene networks to scoliosis (2011) Cell, 145 (5), pp. 650-663. , 10.1016/j.cell.2011.05.011 0092-8674 
504 |a Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R., Oscillatory expression of the BHLH factor Hes1 regulated by a negative feedback loop (2002) Science, 298 (5594), pp. 840-843. , DOI 10.1126/science.1074560 
504 |a Lewis, J., Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator (2003) Current Biology, 13 (16), pp. 1398-1408. , DOI 10.1016/S0960-9822(03)00534-7 
504 |a Oates, A.C., Ho, R.K., HairyE/(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish (2002) Development, 129 (12), pp. 2929-2946 
504 |a Peruani, F., Nicola, E.M., Morelli, L.G., Mobility induces global synchronization of oscillators in periodic extended systems (2010) New J. Phys., 12 (9). , 1367-2630 093029 
504 |a Tiedemann, H.B., Schneltzer, E., Zeiser, S., Rubio-Aliaga, I., Wurst, W., Beckers, J., Przemeck, G.K.H., Hrabe De Angelis, M., Cell-based simulation of dynamic expression patterns in the presomitic mesoderm (2007) Journal of Theoretical Biology, 248 (1), pp. 120-129. , DOI 10.1016/j.jtbi.2007.05.014, PII S0022519307002457 
504 |a Tinsley, M.R., Taylor, A.F., Huang, Z.Y., Showalter, K., Emergence of collective behavior in groups of excitable catalyst-loaded particles: Spatiotemporal dynamical quorum sensing (2009) Phys. Rev. Lett., 102 (15). , 10.1103/PhysRevLett.102.158301 0031-9007 158301 
504 |a Uriu, K., Morishita, Y., Iwasa, Y., Random cell movement promotes synchronization of the segmentation clock (2010) Proc. Natl Acad. Sci. USA, 107 (11), pp. 4979-4984. , 10.1073/pnas.0907122107 0027-8424 
504 |a Frasca, M., Buscarino, A., Rizzo, A., Fortuna, L., Boccaletti, S., Synchronization of moving chaotic agents (2008) Physical Review Letters, 100 (4), p. 044102. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.044102&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.044102 
504 |a Fujiwara, N., Kurths, J., Díaz-Guilera, A., Synchronization in networks of mobile oscillators (2011) Phys. Rev., 83 (2). , 10.1103/PhysRevE.83.025101 1539-3755 E 025101 
504 |a Skufca, J.D., Bollt, E.M., Communication and synchronization in disconnected networks with dynamic topology: Moving neighborhood networks (2004) Math. Biosci. Eng., 1 (2), pp. 347-359. , 10.3934/mbe.2004.1.347 1551-0018 
504 |a Sprinzak, D., Lakhanpal, A., Lebon, L., Santat, L.A., Fontes, M.E., Anderson, G.A., Garcia-Ojalvo, J., Elowitz, M.B., Cis-interactions between Notch and Delta generate mutually exclusive signalling states (2010) Nature, 465 (7294), pp. 86-90. , 10.1038/nature08959 0028-0836 
504 |a Sakaguchi, H., Shinomoto, S., Kuramoto, Y., Local and global self-entrainments in oscillator lattices (1987) Prog. Theor. Phys., 77 (5), pp. 1005-1010. , 10.1143/PTP.77.1005 0033-068X 
504 |a Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., Oates, A.C., Delayed coupling theory of vertebrate segmentation (2009) HFSP J., 3 (1), pp. 55-66. , 10.2976/1.3027088 1955-2068 
504 |a Murray, P.J., Maini, P.K., Baker, R.E., The clock and wavefront model revisited (2011) J. Theor. Biol., 283 (1), pp. 227-238. , 10.1016/j.jtbi.2011.05.004 0022-5193 
504 |a Herrgen, L., Ares, S., Morelli, L.G., Schröter, C., Jülicher, F., Oates, A.C., Intercellular coupling regulates the period of the segmentation clock (2010) Curr. Biol., 20 (14), pp. 1244-1253. , 10.1016/j.cub.2010.06.034 0960-9822 
504 |a Liu, C., Weaver, D.R., Strogatz, S.H., Reppert, S.M., Cellular construction of a circadian clock: Period determination in the suprachiasmatic nuclei (1997) Cell, 91 (6), pp. 855-860. , DOI 10.1016/S0092-8674(00)80473-0 
504 |a Yang, Q., Pando, B.F., Dong, G.G., Golden, S.S., Van Oudenaarden, A., Circadian gating of the cell cycle revealed in single cyanobacterial cells (2010) Science, 327 (5972), pp. 1522-1526. , 10.1126/science.1181759 0036-8075 
504 |a Uriu, K., Morishita, Y., Iwasa, Y., Traveling wave formation in vertebrate segmentation (2009) J. Theor. Biol., 257 (3), pp. 385-396. , 10.1016/j.jtbi.2009.01.003 0022-5193 
504 |a Kuramoto, Y., (1984) Chemical Oscillations, Waves and Turbulence, 19. , 10.1007/978-3-642-69689-3 0172-7389 
504 |a Strogatz, S.H., Mirollo, R.E., Stability of incoherence in a population of coupled oscillators (1991) J. Stat. Phys., 63 (3-4), pp. 613-635. , 10.1007/BF01029202 0022-4715 
504 |a Cordle, J., Redfield, C., Stacey, M., Van Der Merwe, P.A., Willis, A.C., Champion, B.R., Hambleton, S., Handford, P.A., Localization of the delta-like-1-binding site in human notch-1 and its modulation by calcium affinity (2008) J. Biol. Chem., 283 (17), pp. 11785-11793. , 10.1074/jbc.M708424200 0021-9258 
504 |a Bertet, C., Sulak, L., Lecuit, T., Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation (2004) Nature, 429 (6992), pp. 667-671. , DOI 10.1038/nature02590 
504 |a Keller, R., Shaping the vertebrate body plan by polarized embryonic cell movements (2002) Science, 298 (5600), pp. 1950-1954. , DOI 10.1126/science.1079478 
504 |a Rorth, P., Whence directionality: Guidance mechanisms in solitary and collective cell migration (2011) Dev. Cell, 20 (1), pp. 9-18. , 10.1016/j.devcel.2010.12.014 1534-5807 
504 |a Wallingford, J.B., Fraser, S.E., Harland, R.M., Convergent extension: The molecular control of polarized cell movement during embryonic development (2002) Developmental Cell, 2 (6), pp. 695-706. , DOI 10.1016/S1534-5807(02)00197-1 
504 |a Bassler, B.L., Losick, R., Bacterially speaking (2006) Cell, 125 (2), pp. 237-246. , 10.1016/j.cell.2006.04.001 0092-8674 
504 |a Gillespie, D.T., Exact stochastic simulation of coupled chemical-reactions (1977) J. Phys. Chem., 81 (25), pp. 2340-2361. , 10.1021/j100540a008 0022-3654 
504 |a Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourquie, O., Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis (1997) Cell, 91 (5), pp. 639-648 
520 3 |a Cell movement and intercellular signaling occur simultaneously during the development of tissues, but little is known about how movement affects signaling. Previous theoretical studies have shown that faster moving cells favor synchronization across a population of locally coupled genetic oscillators. An important assumption in these studies is that cells can immediately interact with their new neighbors after arriving at a new location. However, intercellular interactions in cellular systems may need some time to become fully established. How movement affects synchronization in this situation has not been examined. Here, we develop a coupled phase oscillator model in which we consider cell movement and the gradual recovery of intercellular coupling experienced by a cell after movement, characterized by a moving rate and a coupling recovery rate, respectively. We find (1) an optimal moving rate for synchronization and (2) a critical moving rate above which achieving synchronization is not possible. These results indicate that the extent to which movement enhances synchrony is limited by a gradual recovery of coupling. These findings suggest that the ratio of time scales of movement and signaling recovery is critical for information transfer between moving cells. © 2012 IOP Publishing Ltd.  |l eng 
593 |a Theoretical Biology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan 
593 |a Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany 
593 |a Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany 
593 |a Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain 
593 |a Departamento de Física, FCEyN, UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Logic of Genomic Systems Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, 28049 Madrid, Spain 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a BIOLOGICAL RHYTHM 
690 1 0 |a CELL COMMUNICATION 
690 1 0 |a CELL MOTION 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a HUMAN 
690 1 0 |a MORPHOGENESIS 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ANIMALS 
690 1 0 |a BIOLOGICAL CLOCKS 
690 1 0 |a CELL COMMUNICATION 
690 1 0 |a CELL MOVEMENT 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a HUMANS 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a MORPHOGENESIS 
690 1 0 |a SIGNAL TRANSDUCTION 
700 1 |a Ares, S. 
700 1 |a Oates, A.C. 
700 1 |a Morelli, L.G. 
773 0 |d 2012  |g v. 9  |k n. 3  |p Phys. Biol.  |x 14783967  |t Physical Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861117946&doi=10.1088%2f1478-3975%2f9%2f3%2f036006&partnerID=40&md5=1dd5462ed4cd53e20da517185d531f8c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/1478-3975/9/3/036006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14783967_v9_n3_p_Uriu  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14783967_v9_n3_p_Uriu  |y Registro en la Biblioteca Digital 
961 |a paper_14783967_v9_n3_p_Uriu  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70554