Improved double-robust estimation in missing data and causal inference models

Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-ro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rotnitzky, A.
Otros Autores: Lei, Q., Sued, M., Robins, J.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07112caa a22006977a 4500
001 PAPER-9598
003 AR-BaUEN
005 20230518203932.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84861641356 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BIOKA 
100 1 |a Rotnitzky, A. 
245 1 0 |a Improved double-robust estimation in missing data and causal inference models 
260 |c 2012 
270 1 0 |m Rotnitzky, A.; Di Tella University, Saenz Valiente 1010, Buenos Aires 14281, Argentina; email: arotnitzky@utdt.edu 
506 |2 openaire  |e Política editorial 
504 |a Bang, H., Robins, J.M., Doubly robust estimation in missing data and causal inference models (2005) Biometrics, 61, pp. 692-972 
504 |a Cao, W., Tsiatis, A., Davidian, M., Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data (2009) Biometrika, 96, pp. 723-734 
504 |a Gill, R.D., Non- and semi-parametric maximum likelihood estimators and the von mises method (1989) Scand. J. Statist., 16, pp. 97-128 
504 |a Kang, D.Y.L., Schafer, J.L., Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (with discussion and rejoinder (2007) Statist. Sci., 22, pp. 523-580 
504 |a Robins, J.M., Marginal structural models versus structural nested models as tools for causal inference (1999) Statistical Models in Epidemiology: The Environment and Clinical Trials, pp. 95-134. , Ed. M. E. Halloran and D. Berry, Institute for Mathematics and its Applications 116. New York: Springer 
504 |a Robins, J.M., Robust estimation in sequentially ignorable missing data and causal inference models (2000) Proc. Am. Statist. Assoc. Sect. Bayesian Statist. Sci., pp. 6-10 
504 |a Robins, J.M., Rotnitzky, A., Semiparametric efficiency in multivariate regression models with missing data (1995) J. Am. Statist. Assoc., 90, pp. 122-129 
504 |a Robins, J.M., Wang, N., Inference for imputation estimators (2000) Biometrika, 87, pp. 113-124 
504 |a Robins, J.M., Rotnitzky, A., Zhao, L.P., Estimation of regression-coefficients when some regressors are not always observed (1994) J. Am. Statist. Assoc., 89, pp. 846-866 
504 |a Robins, J.M., Gomez, Q., Sued, M., Rotnitzky, A., Performance of double-robust estimators when inverse probability weights are highly variable (2007) Statist. Sci., 22, pp. 544-559 
504 |a Rubin, D.B., Inference and missing data (1976) Biometrika, 63, pp. 581-592 
504 |a Rubin, D., Van Der Laan, M.J., Empirical efficiency maximization: Improved locally efficient covariate adjustment in randomized experiments and survival analysis (2008) Int. J. Biostatist., 4. , article 5 
504 |a Scharfstein, D.O., Rotnitzky, A., Robins, J.M., Adjusting for non-ignorable drop-out using semiparametric non-response models (1999) J. Am. Statist. Assoc., 94, pp. 1096-1020 
504 |a Tan, Z., A distributional approach for causal inference using propensity scores (2006) J. Am. Statist. Assoc., 101, pp. 1619-1637 
504 |a Tan, Z., Understanding or, ps and dr (2007) Statist. Sci., 22, pp. 560-568 
504 |a Tan, Z., Comment: Improved local efficiency and double robustness (2008) Int. J. Biostatist., 4. , article 10 
504 |a Tan, Z., Bounded, efficient and doubly robust estimation with inverse weighting (2010) Biometrika, 97, pp. 661-682 
504 |a Tan, Z., Nonparametric likelihood and doubly robust estimating equations for marginal and nested structural models (2010) Can. J. Statist., 38, pp. 609-632 
504 |a Van Der Laan, M.J., Targetedmaximum likelihood based causal inference: Part i (2010) Int. J. Biostatist., 6. , article 2 
504 |a Van Der Laan, M.J., Robins, J., (2003) Unified Methods for Censored Longitudinal Data and Causality, , New York: Springer 
504 |a Van Der Laan, M.J., Rubin, D., Targeted maximum likelihood learning (2006) Int. J. Biostatist., 2. , article 11 
504 |a Van Der Vaart, A.W., (2000) Asymptotic Statistics, , Cambridge: Cambridge University Press 
520 3 |a Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory. © 2012 Biometrika Trust.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: National Institutes of Health 
536 |a Detalles de la financiación: Harvard School of Public Health 
536 |a Detalles de la financiación: Andrea Rotnitzky, Lei Gomez and James Robins were funded by grants from the National Institutes of Health, U.S.A. Andrea Rotnitzky is also affiliated with the Harvard School of Public Health. Mariela Sued was funded by grants from the Agencia de Promocion Cientifica y Tecnica de Argentina and the Consejo Nacional de Investigaciones Cientificas y Tecnicas de Argentina. The authors wish to thank the reviewers for helpful comments. 
593 |a Di Tella University, Saenz Valiente 1010, Buenos Aires 14281, Argentina 
593 |a Adheris, Inc., One Van de Graaff Drive, Burlington, MA 01803, United States 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Guiraldes 2160, Buenos Aires 1428, Argentina 
593 |a Harvard School of Public Health, 655 Huntington Ave., Boston, MA 02115, United States 
690 1 0 |a DROP-OUT 
690 1 0 |a MARGINAL STRUCTURAL MODEL 
690 1 0 |a MISSING AT RANDOM 
700 1 |a Lei, Q. 
700 1 |a Sued, M. 
700 1 |a Robins, J.M. 
773 0 |d 2012  |g v. 99  |h pp. 439-456  |k n. 2  |p Biometrika  |x 00063444  |w (AR-BaUEN)CENRE-139  |t Biometrika 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861641356&doi=10.1093%2fbiomet%2fass013&partnerID=40&md5=38d5a41fad5bf8e3b23e3f4956e81e41  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1093/biomet/ass013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00063444_v99_n2_p439_Rotnitzky  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063444_v99_n2_p439_Rotnitzky  |y Registro en la Biblioteca Digital 
961 |a paper_00063444_v99_n2_p439_Rotnitzky  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion