Endogenous galectin-3 controls experimental malaria in a species-specific manner

Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses. Galectin-3 has been implicated in several immunological processes as well as in pathogen recognition through specific binding to glycosylated receptors on the surface of hos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Toscano, M.A
Otros Autores: Tongren, J.E, De Souza, J.B, Liu, F.-T, Riley, E.M, Rabinovich, G.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11001caa a22013217a 4500
001 PAPER-9522
003 AR-BaUEN
005 20230518203927.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84862027187 
024 7 |2 cas  |a galectin 3, 208128-56-7; Antibodies, Protozoan; Galectin 3; Immunoglobulin G; Lgals3 protein, mouse 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PAIMD 
100 1 |a Toscano, M.A. 
245 1 0 |a Endogenous galectin-3 controls experimental malaria in a species-specific manner 
260 |c 2012 
270 1 0 |m Rabinovich, G.A.; Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina; email: gabyrabi@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Rabinovich, G.A., Gruppi, A., Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease (2005) Parasite Immunol, 27, pp. 103-114 
504 |a Vasta, G.R., Roles of galectins in infection (2009) Nat Rev Microbiol, 7, pp. 424-438 
504 |a Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation (2009) Nat Rev Immunol, 9, pp. 338-352 
504 |a Nieminen, J., St-Pierre, C., Bhaumik, P., Poirier, F., Sato, S., Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae (2008) J Immunol, 180, pp. 2466-2473 
504 |a Hsu, D.K., Yang, R.Y., Pan, Z., Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses (2000) Am J Pathol, 156, pp. 1073-1083 
504 |a Sano, H., Hsu, D.K., Yu, L., Human galectin-3 is a novel chemoattractant for monocytes and macrophages (2000) J Immunol, 165, pp. 2156-2164 
504 |a Ruas, L.P., Bernardes, E.S., Fermino, M.L., Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity (2009) PLoS ONE, 4, pp. e4519 
504 |a Ferraz, L.C., Bernardes, E.S., Oliveira, A.F., Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection (2008) Eur J Immunol, 38, pp. 2762-2775 
504 |a Stowell, S.R., Qian, Y., Karmakar, S., Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion (2008) J Immunol, 180, pp. 3091-3102 
504 |a Stillman, B.N., Hsu, D.K., Pang, M., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) J Immunol, 176, pp. 778-789 
504 |a Acosta-Rodriguez, E.V., Montes, C.L., Motran, C.C., Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection (2004) J Immunol, 172, pp. 493-502 
504 |a Oliveira, F.L., Chammas, R., Ricon, L., Galectin-3 regulates peritoneal B1-cell differentiation into plasma cells (2009) Glycobiology, 19, pp. 1248-1258 
504 |a Kohatsu, L., Hsu, D.K., Jegalian, A.G., Liu, F.T., Baum, L.G., Galectin-3 induces death of Candida species expressing specific beta-1, 2-linked mannans (2006) J Immunol, 177, pp. 4718-4726 
504 |a Pelletier, I., Sato, S., Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope (2002) J Biol Chem, 277, pp. 17663-17670 
504 |a van den Berg, T.K., Honing, H., Franke, N., LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition (2004) J Immunol, 173, pp. 1902-1907 
504 |a de Souza, J.B., Hafalla, J.C., Riley, E.M., Couper, K.N., Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease (2010) Parasitology, 137, pp. 755-772 
504 |a Taylor-Robinson, A.W., Regulation of immunity to Plasmodium: implications from mouse models for blood stage malaria vaccine design (2010) Exp Parasitol, 126, pp. 406-414 
504 |a Longley, R., Smith, C., Fortin, A., Host resistance to malaria: using mouse models to explore the host response (2011) Mamm Genome, 22, pp. 32-42 
504 |a Tongren, J.E., Corran, P.H., Jarra, W., Langhorne, J., Riley, E.M., Epitope-specific regulation of immunoglobulin class switching in mice immunized with malarial merozoite surface proteins (2005) Infect Immun, 73, pp. 8119-8129 
504 |a Marsh, K., Kinyanjui, S., Immune effector mechanisms in malaria (2006) Parasite Immunol, 28, pp. 51-60 
504 |a Fortier, A., Min-Oo, G., Forbes, J., Lam-Yuk-Tseung, S., Gros, P., Single gene effects in mouse models of host: pathogen interactions (2005) J Leukoc Biol, 77, pp. 868-877 
504 |a Ahlborg, N., Ling, I.T., Holder, A.A., Riley, E.M., Linkage of exogenous T-cell epitopes to the 19-kilodalton region of Plasmodium yoelii merozoite surface protein 1 (MSP1(19)) can enhance protective immunity against malaria and modulate the immunoglobulin subclass response to MSP1(19) (2000) Infect Immun, 68, pp. 2102-2109 
504 |a Oakley, M.S., Majam, V., Mahajan, B., Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice (2009) PLoS ONE, 4, pp. e6793 
504 |a Perkins, S.L., Sarkar, I.N., Carter, R., The phylogeny of rodent malaria parasites: simultaneous analysis across three genomes (2007) Infect Genet Evol, 7, pp. 74-83 
504 |a el-Nahal, H.M., Serological cross-reaction between rodent malaria parasites as determined by the indirect immunofluorescent technique (1967) Bull World Health Organ, 36, pp. 423-429 
504 |a Breuilh, L., Vanhoutte, F., Fontaine, J., Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells (2007) Infect Immun, 75, pp. 5148-5157 
504 |a Oliveira, F.L., Frazao, P., Chammas, R., Kinetics of mobilization and differentiation of lymphohematopoietic cells during experimental murine schistosomiasis in galectin-3 -/- mice (2007) J Leukoc Biol, 82, pp. 300-310 
520 3 |a Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses. Galectin-3 has been implicated in several immunological processes as well as in pathogen recognition through specific binding to glycosylated receptors on the surface of host cells or microorganisms. In spite of considerable evidence supporting a role for galectin-3 in host-pathogen interactions, the relevance of this lectin in the regulation of the host defence mechanisms in vivo is poorly understood. In this study, we analysed the impact of galectin-3 deficiency during infection with three distinct species of rodent malaria parasites, Plasmodium yoelii 17XNL, Plasmodium berghei ANKA and Plasmodium chabaudi AS. We found that galectin-3 deficiency showed a marginal effect on the course of parasitaemia during P. chabaudi infection, but did not alter the course of parasitaemia during P. berghei infection. However, lack of galectin-3 significantly reduced P. yoelii parasitaemia. This reduced parasitaemia in Lgals3 -/- mice was consistent with higher titres of anti-P. yoelii MSP1 19 IgG2b isotype antibodies when compared with their wild-type counterparts. Our results reflect the complexity and singularity of host-pathogen interactions, indicating a species-specific role of endogenous galectin-3 in the control of parasite infections and the modulation of antibody responses. © 2012 Blackwell Publishing Ltd.  |l eng 
593 |a Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom 
593 |a Division of Infection and Immunity, University College London Medical School, Cruciform Building, London, United Kingdom 
593 |a Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CS, United States 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a President's Malaria Initiative (PMI), Centers for Disease Control and Prevention, Kigali, Rwanda 
690 1 0 |a GALECTIN-3 
690 1 0 |a IMMUNOGLOBULIN G 
690 1 0 |a PLASMODIUM SPP. 
690 1 0 |a GALECTIN 3 
690 1 0 |a IMMUNOGLOBULIN G2B 
690 1 0 |a PROTOZOON ANTIBODY 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ANTIBODY RESPONSE 
690 1 0 |a ANTIBODY TITER 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ERYTHROCYTE 
690 1 0 |a HEMATOCRIT 
690 1 0 |a HOST PATHOGEN INTERACTION 
690 1 0 |a IMMUNOGLOBULIN BLOOD LEVEL 
690 1 0 |a LYMPHOCYTE 
690 1 0 |a MONOCYTE 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PARASITEMIA 
690 1 0 |a PLASMODIUM BERGHEI 
690 1 0 |a PLASMODIUM BERGHEI INFECTION 
690 1 0 |a PLASMODIUM CHABAUDI 
690 1 0 |a PLASMODIUM CHABAUDI INFECTION 
690 1 0 |a PLASMODIUM YOELII 
690 1 0 |a PLASMODIUM YOELII INFECTION 
690 1 0 |a POLYMORPHONUCLEAR CELL 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN DEFICIENCY 
690 1 0 |a RETICULOCYTE 
690 1 0 |a SPECIES DIFFERENCE 
690 1 0 |a WILD TYPE 
690 1 0 |a ANIMALS 
690 1 0 |a ANTIBODIES, PROTOZOAN 
690 1 0 |a DISEASE MODELS, ANIMAL 
690 1 0 |a FEMALE 
690 1 0 |a GALECTIN 3 
690 1 0 |a HOST-PATHOGEN INTERACTIONS 
690 1 0 |a IMMUNOGLOBULIN G 
690 1 0 |a MICE 
690 1 0 |a MICE, KNOCKOUT 
690 1 0 |a PARASITEMIA 
690 1 0 |a PLASMODIUM BERGHEI 
690 1 0 |a PLASMODIUM CHABAUDI 
690 1 0 |a PLASMODIUM YOELII 
650 1 7 |2 spines  |a MALARIA 
700 1 |a Tongren, J.E. 
700 1 |a De Souza, J.B. 
700 1 |a Liu, F.-T. 
700 1 |a Riley, E.M. 
700 1 |a Rabinovich, G.A. 
773 0 |d 2012  |g v. 34  |h pp. 383-387  |k n. 7  |p Parasite Immunol.  |x 01419838  |w (AR-BaUEN)CENRE-6402  |t Parasite Immunology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862027187&doi=10.1111%2fj.1365-3024.2012.01366.x&partnerID=40&md5=80bca895b34f2ce10ef4801d07c9a8ef  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1365-3024.2012.01366.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01419838_v34_n7_p383_Toscano  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01419838_v34_n7_p383_Toscano  |y Registro en la Biblioteca Digital 
961 |a paper_01419838_v34_n7_p383_Toscano  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70475