Evaluating uncertainties in regional climate simulations over South America at the seasonal scale

This work focuses on the evaluation of different sources of uncertainty affecting regional climate simulations over South America at the seasonal scale, using the MM5 model. The simulations cover a 3-month period for the austral spring season. Several four-member ensembles were performed in order to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Solman, S.A
Otros Autores: Pessacg, N.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12982caa a22010097a 4500
001 PAPER-9517
003 AR-BaUEN
005 20230518203927.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84862987000 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Solman, S.A. 
245 1 0 |a Evaluating uncertainties in regional climate simulations over South America at the seasonal scale 
260 |c 2012 
270 1 0 |m Solman, S. A.; Centro de Investigaciones del Mar y la Atmósfera CIMA/CONICET-UBA, DCAO/FCEN, UMI-IFAECI/CNRS, CIMA-Ciudad Universitaria, Pabellón II-Piso 2 (1428), Buenos Aires, Argentina; email: solman@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alexandru, A., de Elia, R., Laprise, R., Interanual variability in regional climate downscaling at the seasonal scale (2007) Mon Weather Rev, 135, pp. 3221-3238 
504 |a Betts, A.K., Miller, M.J., The best Miller scheme (1993) Amer Met Soc, , The representation of cumulus convection in numerical models of the atmosphere. In: Emanuel KA, Raymond DJ (eds) 
504 |a Bright, D., Mullen, S., The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5 (2002) Weather Forecast, 17, pp. 99-114 
504 |a Caya, D., Biner, S., Internal variability of RCM simulations over an annual cycle (2004) Clim Dyn, 22, pp. 33-46 
504 |a Chen, F., Dudhia, J., Coupling and advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity (2001) Mon Weather Rev, 129, pp. 569-585 
504 |a Christensen, O.B., Gaertner, M.A., Prego, J.A., Polcher, J., Internal variability of regional climate models (2001) Clim Dyn, 17, pp. 875-887 
504 |a Colin, J., Deque, M., Radu, R., Somot, S., Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique (2010) Tellus, 62 A, pp. 591-604 
504 |a de Elía, R., Laprise, R., Denis, B., Evaluation of uncertainties in the CRCM-simulated North American climate (2008) Clim Dyn, 30, pp. 113-132 
504 |a Déqué, M., Rowell, D.P., Luthi, D., Giorgi, F., Christensen, J.H., Rockel, B., Jacobson, D., van der hurk, B., An intercomparison of regional climatic simulations for Europe: assessing uncertainties in model projections (2007) Clim Change, 81, pp. 53-70 
504 |a Fernández, J., Montávez, J.P., Sáenz, J., González-Rouco, J.F., Zorita, E., Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle (2007) J Geophys Res, 112, pp. D04101. , doi:10.1029/2005JD00664 
504 |a Garand, L., Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region (1983) J Atmos Sci, 40, pp. 230-244 
504 |a Giorgi, F., Bi, X., A study of internal variability of regional climate model (2000) J Geophys Res, 105, pp. 29503-29521 
504 |a Giorgi, F., Jones, C., Asrar, G., Addressing climate information needs at the regional level: the CORDEX framework (2009) WMO Bull, 58, pp. 175-183 
504 |a Grell, G.A., Prognostic evaluation of assumptions used by cumulus parameterizations (1993) Mon Weather Rev, 12, pp. 764-787 
504 |a Grell, G.A., Dudhia, J., Stauffer, D.R., (1994) A description of the fifth generation penn system/NCAR mesoscale model (MM5), , NCAR Tech Note NCAR/TN-398 + 1A 
504 |a Hawkins, E., Sutton, R., The potential to narrow uncertainty in regional climate predictions (2009) Bull Am Meteorol Soc, 90, pp. 1095-1107 
504 |a Hewitt, C.D., The ENSEMBLES project: providing ensemble-based predictions of climate changes and their impacts (2005) Published article appears in the EGGS newsletter, 13, pp. 22-25 
504 |a Hsie, E.Y., Anthes, R.A., Keyser, D., Numerical simulation of frontogenesis in a moist atmosphere (1984) J Atmos Sci, 41, pp. 2581-2594 
504 |a Jones, D., Simmonds, I., Time and space spectral analyses of southern hemisphere sea level pressure variability (1993) Mon Weather Rev, 121, pp. 661-672 
504 |a Kain, J.S., The Kain-Fritsch convective parameterization: an update (2004) J Appl Meteorol, 43, pp. 170-181 
504 |a Kain, J.S., Fritsch, J.M., Convective parameterization for mesoscale models: the Kain-Fritsch scheme (1993) Amer Meteor Soc, pp. 165-170. , The representation of cumulus convection in numerical models. Meteor Monogr No 24 
504 |a Lucas-Picher, P., Caya, D., de Elía, R., Laprise, R., Investigation of regional climate models' internal variability with a ten-member ensemble of 10-year simulations over a large domain (2008) Clim Dyn, 31, pp. 927-940 
504 |a Lynn, B., Healy, R., Druyan, L.M., Quantifying the sensitivity of simulated climate change to model configuration (2009) Clim Change, 92, pp. 275-298 
504 |a Marengo, J.A., Ambrizzi, T., da Rocha, R., Cuadra, S.V., Alves, L.M., Valverde, M.C., Torres, R.R., Ferraz, S., Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models (2010) Clim Dyn, 35, pp. 1089-1113 
504 |a Mearns, A multiple AOGCM and RCM climate scenario project over North America (2005) AMS 16th conference on climate variations and change, pp. 235-238. , NARCCAP (North American Regional Climate Change Assessment Program) 
504 |a Mellor, G.L., Yamada, T., A hierarchy of turbulence closure models for planetary boundary layers (1974) J Atmos Sci, 31, pp. 1791-1806 
504 |a Miguez-Macho, G., Stenchikov, G., Robock, A., Regional climate simulations over North America: interaction of local processes with improved large-scale flow (2005) J Clim, 18, pp. 1227-1246 
504 |a Murphy, J.M., Sexton, D.M.H., Barnett, D.N., Jones, G.S., Webb, M.J., Collins, M., Stainforth, D.A., Quantification of modelling uncertainties in a large ensemble of climate change simulations (2004) Nature, 429, pp. 768-772 
504 |a Murphy, J.M., Booth, B.B., Collins, M., Harris, G.R., Sexton, D.M.H., Webb, M.J., A methodology for probabilistic predictions of regional climate change from perturbed physics ensambles (2007) Phil Trans R Soc A, 365, pp. 1993-2028 
504 |a Nogués-Paegle, J., Mo, K.C., Alternating wet and dry conditions over South America during summer (1997) Mon Weather Rev, 125, pp. 279-291 
504 |a Nuñez, M.N., Solman, S., Cabré, M.F., Regional Climate change experiments over Southern South America. II: climate change scenarios in the late twenty first century (2009) Clim Dyn, 32, pp. 1081-1095 
504 |a O'Brien, T., Sloan, L.C., Snyder, M.A., Can ensembles of regional climate model simulations improve results from sensitivity studies? (2010) Clim Dyn, , doi: 10. 1007/s00382-010-0900-5 
504 |a Rauscher, S., Seth, A., Qian, J.-H., Camargo, S.J., Domain choice in a an experimental nested modeling prediction system for South America (2006) Theor Appl Climatol, 86, pp. 229-246 
504 |a Rinke, A., Dethloff, K., Cassano, J.J., Christensen, J.H., Curry, J.A., Du, P., Girard, E., Zagar, M., Evaluation of an ensemble of Arctic regional climate models: spatiotemporal fields during the SHEBA year (2006) Clim Dyn, 6, pp. 459-472 
504 |a Sanchez, E., Berbery, E., Solman, S., García-Ochoa, R., Samuelsson, P., Remedio, A., Jacob, D., Le Treut, H., Present climate validation of an ensemble of regional climate models over South America forced by 1989-2008 ERAinterim reanalysis (2010) Eos Trans AGU, 91 (26). , Meet Am Suppl, Abstract GC33A-02 
504 |a Seth, A., Giorgi, F., The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model (1998) J Clim, 11, pp. 2698-2712 
504 |a Seth, A., Rojas, M., Simulation and sensitivity in a nested modeling system for South America. Part I. Reanalysis boundary forcing (2003) J Clim, 16, pp. 2437-2453 
504 |a Solman, S., Pessacg, N., Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model (2011) Clim Dyn, , doi: 10. 1007/s00382-011-1049-6 
504 |a Stephens, G.L., Radiation profiles in extended water clouds: II. Parameterization schemes (1978) J Atmos Sci, 35, pp. 2123-2132 
504 |a Tadross, M., Gutowski, W., Hewitson, W., Jack, C., New, M., MM5 simulations of interannual change and the diurnal cycle of southern African regional climate (2006) Theor Appl Climatol, 86, pp. 63-80 
504 |a Uppala, S.M., The ERA-40 re-analysis (2005) Q J R Meteorol Soc, 131, pp. 2961-3012. , doi:10.1256/qj.04.176 
504 |a Vanvyve, E., Hall, N., Messager, C., Leroux, S., van Ypersele, J.P., Internal variability in a regional climate model over West Africa (2008) Clim Dyn, 30, pp. 191-202 
504 |a Wu, W., Lynch, A.H., Rivers, A., Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions (2005) J Clim, 18, pp. 917-933 
504 |a Yang, Z., Arrit, R., Test of a perturbed physics ensemble approach for regional climate modeling (2002) J Clim, 15, pp. 2881-2896 
520 3 |a This work focuses on the evaluation of different sources of uncertainty affecting regional climate simulations over South America at the seasonal scale, using the MM5 model. The simulations cover a 3-month period for the austral spring season. Several four-member ensembles were performed in order to quantify the uncertainty due to: the internal variability; the definition of the regional model domain; the choice of physical parameterizations and the selection of physical parameters within a particular cumulus scheme. The uncertainty was measured by means of the spread among individual members of each ensemble during the integration period. Results show that the internal variability, triggered by differences in the initial conditions, represents the lowest level of uncertainty for every variable analyzed. The geographic distribution of the spread among ensemble members depends on the variable: for precipitation and temperature the largest spread is found over tropical South America while for the mean sea level pressure the largest spread is located over the southeastern Atlantic Ocean, where large synoptic-scale activity occurs. Using nudging techniques to ingest the boundary conditions reduces dramatically the internal variability. The uncertainty due to the domain choice displays a similar spatial pattern compared with the internal variability, except for the mean sea level pressure field, though its magnitude is larger all over the model domain for every variable. The largest spread among ensemble members is found for the ensemble in which different combinations of physical parameterizations are selected. The perturbed physics ensemble produces a level of uncertainty slightly larger than the internal variability. This study suggests that no matter what the source of uncertainty is, the geographical distribution of the spread among members of the ensembles is invariant, particularly for precipitation and temperature. © 2011 Springer-Verlag.  |l eng 
593 |a Centro de Investigaciones del Mar y la Atmósfera CIMA/CONICET-UBA, DCAO/FCEN, UMI-IFAECI/CNRS, CIMA-Ciudad Universitaria, Pabellón II-Piso 2 (1428), Buenos Aires, Argentina 
593 |a Centro Nacional Patagónico (CONICET), Puerto Madryn, Chubut, Argentina 
690 1 0 |a MM5 MODEL 
690 1 0 |a REGIONAL CLIMATE MODELING 
690 1 0 |a UNCERTAINTY 
690 1 0 |a CLIMATE MODELING 
690 1 0 |a ENSEMBLE FORECASTING 
690 1 0 |a GEOGRAPHICAL DISTRIBUTION 
690 1 0 |a PARAMETERIZATION 
690 1 0 |a PRECIPITATION (CLIMATOLOGY) 
690 1 0 |a REGIONAL CLIMATE 
690 1 0 |a SEA LEVEL PRESSURE 
690 1 0 |a SEASONAL VARIATION 
690 1 0 |a UNCERTAINTY ANALYSIS 
651 4 |a SOUTH AMERICA 
651 4 |a SOUTH AMERICA 
700 1 |a Pessacg, N.L. 
773 0 |d 2012  |g v. 39  |h pp. 59-76  |k n. 1-2  |p Clim. Dyn.  |x 09307575  |w (AR-BaUEN)CENRE-567  |t Climate Dynamics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862987000&doi=10.1007%2fs00382-011-1219-6&partnerID=40&md5=98c41d87ac57ff9173c26a1f14821344  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00382-011-1219-6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09307575_v39_n1-2_p59_Solman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v39_n1-2_p59_Solman  |y Registro en la Biblioteca Digital 
961 |a paper_09307575_v39_n1-2_p59_Solman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70470