Models for growth of heterogeneous sandpiles via Mosco convergence

In this paper we study the asymptotic behavior of several classes of power-law functionals involving variable exponents p n(·) →∞, via Mosco convergence. In the particular case p n(·)=np(·), we show that the sequence {H n} of functionals H n:L 2(R N)→[0,+∞] given by H n(u)=∫R Nλ(x) n/np(x) |∇u(x)| n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bocea, M.
Otros Autores: Mihǎilescu, M., Pérez-Llanos, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10994caa a22010817a 4500
001 PAPER-9491
003 AR-BaUEN
005 20230518203925.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84857069128 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ASANE 
100 1 |a Bocea, M. 
245 1 0 |a Models for growth of heterogeneous sandpiles via Mosco convergence 
260 |c 2012 
270 1 0 |m Bocea, M.; Department of Mathematics and Statistics, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL 60660, United States; email: mbocea@luc.edu 
506 |2 openaire  |e Política editorial 
504 |a Acerbi, E., Mingione, G., Regularity results for stationary electro-rheological fluids (2002) Arch. Ration. Mech. Anal., 164, pp. 213-259 
504 |a Acerbi, E., Mingione, G., Gradient estimates for the p(x)-Laplacian system (2005) J. Reine Angew. Math., 584, pp. 117-148 
504 |a Andreu, F., Mazon, J.M., Rossi, J.D., Toledo, J., The limit as p ̌ 8in a nonlocal p-Laplacian evolution equation. A nonlocal approximation of a model for sandpiles (2009) Calc. Var. Partial Differential Equations, 35 (3), pp. 279-316 
504 |a Aronsson, G., Evans, L.C., Wu, Y., Fast/slow diffusion and growing sandpiles (1996) J. Differential Equations, 131, pp. 304-335 
504 |a Attouch, H., Familles d'opérateurs maximaux monotones et mesurabilité (1979) Ann. Mat. Pura Appl., 120, pp. 35-111 
504 |a Attouch, H., (1984) Variational Convergence for Functions and Operators, , Pitman, London 
504 |a Bénilan, P., Crandall, M.G., Completely accretive operators (1991) Semigroups Theory and Evolution Equations, pp. 41-76. , P. Clement et al., eds, Marcel Dekker, New York, NY 
504 |a Bénilan, P., Crandall, M.G., Pazy, A., Evolution Equations Governed by Accretive Operators, , to appear 
504 |a Bénilan, P., Evans, L.C., Gariepy, R.F., On some singular limits of homogeneous semigroups (2003) J. Evol. Equ., 3, pp. 203-214 
504 |a Bocea, M., Nesi, V., (2008) G-convergence of power-law functionals, variational principles in L8, and applications, 39, pp. 1550-1576. , SIAM J. Math. Anal 
504 |a Bocea, M., Miȟailescu, M., Ã-convergence of power-law functionals with variable exponents (2010) Nonlinear Anal., 73, pp. 110-121 
504 |a Bocea, M., Miȟailescu, M., Popovici, C., On the asymptotic behavior of variable exponent power-law functionals and applications (2010) Ricerche di Matematica, 59 (2), pp. 207-238 
504 |a Brezis, H., Équations et inéquations non linéaires dans les espaces vectoriels en dualité (1968) Ann. Inst. Fourier, 18, pp. 115-175 
504 |a Brezis, H., Opérateur maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (1973) North-Holland, , Amsterdam 
504 |a Brezis, H., Pazy, A., Convergence and approximation of semigroups of nonlinear operators in Banach spaces (1972) J. Funct. Anal., 9, pp. 63-74 
504 |a Camar-Eddine, M., Seppecher, P., Closure of the set of diffusion functionals with respect to the Mosco-convergence (2002) Math. Models Methods Appl. Sci., 12 (8), pp. 1153-1176 
504 |a Camar-Eddine, M., Seppecher, P., Determination of the closure of the set of elasticity functionals (2003) Arch. Ration. Mech. Anal., 170 (3), pp. 211-245 
504 |a Cannarsa, P., Cardaliaguet, P., Giorgieri, E., Hölder regularity of the normal distance with an application to a PDE model for growing sandpiles (2007) Trans. Amer. Math. Soc., 359 (6), pp. 2741-2775 
504 |a Cannarsa, P., Cardaliaguet, P., Sinestrari, C., On a differential model for growing sandpiles with non-regular sources (2009) Comm. Partial Differential Equations, 34 (7-9), pp. 656-675 
504 |a Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image processing (2006) SIAM J. Appl. Math., 66 (4), pp. 1383-1406 
504 |a Dacorogna, B., (1989) Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78. , Springer-Verlag, Berlin 
504 |a De Giorgi, E., Sulla convergenza di alcune succesioni di integrali del tipo dell'area (1975) Rend. Mat., 8, pp. 277-294 
504 |a De Giorgi, E., Franzoni, T., Su un tipo di convergenza variazionale (1975) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58, pp. 842-850 
504 |a Diening, L., Hástö, P., Nekvinda, A., Open problems in variable exponent Lebesgue and Sobolev spaces (2005) FSDONA04 Proceedings, Milovy, Czech Republic, pp. 38-58. , P. Drabek and J. Rakosnik, eds, Academy of Sciences of the Czech Republic, Prague 
504 |a Dorfman, J., Evans, L.C., A "lakes and rivers" heuristic metaphor for the singular limit of a nonlinear diffusion PDE (2009) SIAM J. Math. Anal., 41 (4), pp. 1621-1652 
504 |a Ekeland, I., Temam, R., (1972) Convex Analysis and Variational Problems, , North-Holland, Amsterdam 
504 |a Evans, L.C., Feldman, M., Gariepy, R.F., Fast/slow diffusion and collapsing sandpiles (1997) J. Differential Equations, 137, pp. 166-209 
504 |a Evans, L.C., Rezakhanlou, F., A stochastic model for growing sandpiles and its continuum limit (1998) Comm. Math. Phys., 197, pp. 325-345 
504 |a Falcone, M., Finzi Vita, S., A numerical study for growing sandpiles on flat tables with walls (2006) Systems, Control, Modeling, and Optimization IFIP Int. Fed. Inf. Process, 202, pp. 127-137. , Springer-Verlag, New York, NY 
504 |a Falcone, M., Finzi Vita, S., A finite-difference approximation of a two-layer system for growing sandpiles (2006) SIAM J. Sci. Comput., 28, pp. 1120-1132 
504 |a Feldman, M., Growth of a sandpile around an obstacle (1997) Monge Ampère equation: Applications to Geometry and Optimization, 226 (1999), pp. 55-78. , Deerfield Beach, FL, Contemp. Math., Amer. Math. Soc., Providence, RI 
504 |a Garroni, A., Nesi, V., Ponsiglione, M., Dielectric breakdown: Optimal bounds (2001) Proc. R. Soc. Lond. A, 457, pp. 2317-2335 
504 |a Harjulehto, P., Hástö, P., Lê, U.V., Nuortio, M., Overview of differential equations with non-standard growth (2010) Nonlinear Anal., 72, pp. 4551-4574 
504 |a Ková̌cik, O., Rákosník, J., On spaces Lp(x) and W1,p(x (1991) Czech. Math. J., 41 (116), pp. 592-618 
504 |a Lignola, M.B., Morgan, J., Convergence of solutions of quasi-variational inequalities and applications (1997) Topologic. Methods Nonlinear Anal., 10, pp. 375-385. , J. Juliusz Schauder Center 
504 |a Miȟailescu, M., Řadulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids (2006) Proc. R. Soc. Lond. A, 462, pp. 2625-2641 
504 |a Mosco, U., Approximation of the solutions of some variational inequalities (1967) Ann. Sc. Norm. Super. Pisa Cl. Sci., 21, pp. 373-394 
504 |a Mosco, U., Convergence of convex sets and solutions of variational inequalities (1969) Adv. Math., 3, pp. 510-585 
504 |a Mosco, U., Composite media and asymptotic Dirichlet forms (1994) J. Funct. Anal., 123, pp. 368-421 
504 |a Pugachev, O.V., On Mosco convergence of diffusion Dirichlet forms (2009) Theory Probab. Appl., 53 (2), pp. 242-255 
504 |a Prigozhin, L., Sandpiles and river networks: Extended systems with nonlocal interactions (1994) Phys. Rev. E., 49, pp. 1161-1167 
504 |a Prigozhin, L., Zaltzman, B., On the approximation of the dynamics of sandpile surfaces (2003) Port. Math., 60, pp. 127-137 
504 |a Rajagopal, K.R., Ružǐcka, M., Mathematical modeling of electrorheological materials (2001) Contin. Mech. Thermodyn., 13, pp. 59-78 
504 |a Rǔ̌cka, M., Flow of shear dependent electrorheological fluids: Unsteady space periodic case (1999) Applied Nonlinear Analysis, pp. 485-504. , Kluwer/Plenum, New York, NY 
504 |a Rǔ̌cka, M., (2000) Electrorheological Fluids: Modeling and Mathematical Theory, 1748. , Lecture Notes in Mathematics, Springer-Verlag, Berlin 
504 |a Tolstonogov, A.A., Mosco convergence of integral functionals and its applications (2009) Mat. Sb., 200 (3), pp. 119-146 
520 3 |a In this paper we study the asymptotic behavior of several classes of power-law functionals involving variable exponents p n(·) →∞, via Mosco convergence. In the particular case p n(·)=np(·), we show that the sequence {H n} of functionals H n:L 2(R N)→[0,+∞] given by H n(u)=∫R Nλ(x) n/np(x) |∇u(x)| np(x)dx if u∈L 2(R N) ∩W 1,np(·)(R N), +∞ otherwise, converges in the sense of Mosco to a functional which vanishes on the set u∈L 2(R N): λ(x)|∇u| p(x)≤ 1 a.e. x∈R N and is infinite in its complement. We also provide an example of a sequence of functionals whose Mosco limit cannot be described in terms of the characteristic function of a subset of L 2(R N). As an application of our results we obtain a model for the growth of a sandpile in which the allowed slope of the sand depends explicitly on the position in the sample. © 2012 - IOS Press and the authors. All rights reserved.  |l eng 
593 |a Department of Mathematics and Statistics, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL 60660, United States 
593 |a Department of Mathematics, University of Craiova, Craiova, Romania 
593 |a Department of Mathematics, University of Texas at Austin, Austin, TX, United States 
593 |a Departamento de Análisis Matemático, Universidad de Alicante, Alicante, Spain 
593 |a Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina 
690 1 0 |a MOSCO CONVERGENCE 
690 1 0 |a POWER-LAW FUNCTIONALS 
690 1 0 |a SANDPILE MODELS 
690 1 0 |a VARIABLE EXPONENT SPACES 
690 1 0 |a ASYMPTOTIC BEHAVIORS 
690 1 0 |a CHARACTERISTIC FUNCTIONS 
690 1 0 |a FUNCTIONALS 
690 1 0 |a MOSCO-CONVERGENCE 
690 1 0 |a POWER-LAW 
690 1 0 |a SAND-PILE MODELS 
690 1 0 |a VARIABLE EXPONENTS 
690 1 0 |a ASYMPTOTIC ANALYSIS 
690 1 0 |a SAND 
700 1 |a Mihǎilescu, M. 
700 1 |a Pérez-Llanos, M. 
700 1 |a Bocea, M. 
773 0 |d 2012  |g v. 78  |h pp. 11-36  |k n. 1-2  |p Asymptotic Anal  |x 09217134  |w (AR-BaUEN)CENRE-3856  |t Asymptotic Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857069128&doi=10.3233%2fASY-2011-1083&partnerID=40&md5=071cfe02cdd6d796207b2ecf68aed642  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.3233/ASY-2011-1083  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09217134_v78_n1-2_p11_Bocea  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09217134_v78_n1-2_p11_Bocea  |y Registro en la Biblioteca Digital 
961 |a paper_09217134_v78_n1-2_p11_Bocea  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70444