Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects

Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic function...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lombardo, M.V
Otros Autores: Videla, M., Calvo, A., Requejo, Félix Gregorio, Soler-Illia, G.J.A.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16748caa a22019457a 4500
001 PAPER-9477
003 AR-BaUEN
005 20250908092602.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84861457320 
024 7 |2 cas  |a copper sulfate, 7758-98-7, 7758-99-8; silicon dioxide, 10279-57-9, 14464-46-1, 14808-60-7, 15468-32-3, 60676-86-0, 7631-86-9; Copper Sulfate, 7758-98-7; Propylamines; SBA-15; Silicon Dioxide, 7631-86-9; Water Pollutants, Chemical 
030 |a JHMAD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lombardo, M.V. 
245 1 0 |a Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects 
260 |c 2012 
270 1 0 |m Soler-Illia, G.J.A.A.; Gerencia Química, Centro Atómico Constituyentes, CNEA, Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina; email: gsoler@cnea.gov.ar 
504 |a Aguado, J., Arsuaga, J.M., Arencibia, A., Lindo, M., Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica (2009) J. Hazard. Mater., 163, pp. 213-221 
504 |a Babel, S., Kurniawan, T.A., Low-cost adsorbents for heavy metals uptake from contaminated water: a review (2003) J. Hazard. Mater., 97, pp. 219-243 
504 |a (2010) J. Mater. Chem., 20, pp. 4476ss. , See e.g. the themed issue on "Advanced Materials in Water Treatments" 
504 |a Sayari, A., Hamoudi, S., Periodic mesoporous silica-based organic-inorganic nanocomposite materials (2001) Chem. Mater., 13, pp. 3151-3168 
504 |a Hoffmann, F., Cornelius, M., Morell, J., Fröba, M., Silica-based mesoporous organic-inorganic hybrid materials (2006) Angew. Chem. Int. Ed, 45, pp. 3216-3251 
504 |a Walcarius, A., Mercier, L., Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants (2010) J. Mater. Chem., 20, pp. 4478-4511 
504 |a Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores (1998) Science, 279, pp. 548-552 
504 |a Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures (1998) J. Am. Chem. Soc., 120, pp. 6024-6036 
504 |a Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., Patarin, J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures (2002) Chem. Rev., 102, pp. 4093-4138 
504 |a Yoshitake, H., Design of functionalization and structural analysis of organically-modified siliceous oxides with periodic structures for the development of sorbents for hazardous substances (2010) J. Mater. Chem., 20, pp. 4537-4550 
504 |a Liu, J., Feng, X., Fryxell, G.E., Wang, L.-Q., Kim, A.Y., Gong, M., Hybrid mesoporous materials with functionalized monolayers (1998) Adv. Mater., 10, pp. 161-165 
504 |a Soler-Illia, G.J.A.A., Innocenzi, P., Mesoporous hybrid thin films: the physics and chemistry beneath (2006) Chem. Eur. J., 12, pp. 4478-4494 
504 |a Wu, Z., Zhao, D.Y., Ordered mesoporous materials as adsorbents (2011) Chem. Commun., 47, pp. 3332-3338 
504 |a Olkhovyk, O., Jaroniec, M., Chemically-modified mesoporous silicas and organosilicas for adsorption and detection of heavy metal ions (2007) Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors, pp. 179-212. , Imperial College Press, London, (Chapter 8), G.E. Fryxell, G. Cao (Eds.) 
504 |a Brühwiler, D., Postsynthetic functionalization of mesoporous silica (2010) Nanoscale, 2, pp. 887-892 
504 |a Chen, X., Lam, K.F., Zhang, Q., Pan, B., Arruebo, M., Yeung, K.L., Synthesis of highly selective magnetic mesoporous adsorbent (2009) J. Phys. Chem. C, 113, pp. 9804-9813 
504 |a Lui, M., Hidajat, K., Kawi, S., Zhao, D.Y., A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions (2000) Chem. Commun., pp. 1145-1146 
504 |a Lam, K.F., Yeung, K.L., McKay, G., A rational approach in the design of selective mesoporous adsorbents (2006) Langmuir, 22, pp. 9632-9641 
504 |a Ghoul, M., Bacquet, M., Morcellet, M., Uptake of heavy metals from synthetic aqueous solution using modified PEI-silica gels (2003) Water Res., 37, pp. 729-734 
504 |a Etienne, M., Walcarius, A., Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium (2003) Talanta, 59, pp. 1173-1188 
504 |a Da'na, E., Sayari, A., Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: applications to real water samples (2012) Desalination, 285, pp. 62-67 
504 |a Fryxell, G.E., The synthesis of functional mesoporous materials (2006) Inorg. Chem. Commun., 9, pp. 1141-1150 
504 |a Shi, J.L., Hua, Z.L., Zhang, L.X., Nanocomposites from ordered mesoporous materials (2004) J. Mater. Chem., 14, pp. 795-806 
504 |a Soler-Illia, G.J.A.A., Azzaroni, O., Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks (2011) Chem. Soc. Rev., 40, pp. 1107-1150 
504 |a http://www.esrf.eu/computing/scientific/FIT2D/aftp_fit2d.html, Software obtained from the following link:; Thommes, M., Köhn, R., Fröba, M., Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point (2002) Appl. Surf. Sci., 196, pp. 239-249 
504 |a Benhamou, A., Baudu, M., Derriche, Z., Basly, J.P., Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48 (2009) J. Hazard. Mater., 171, pp. 1001-1008 
504 |a Da'na, E., De Silva, N., Sayari, A., Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: kinetics properties (2011) Chem. Eng. J., 166, pp. 454-459 
504 |a Burke, A.M., Hanrahan, J.P., Healy, D.A., Sodeau, J.R., Holmes, J.D., Morris, M.A., Large pore bi-functionalised mesoporous silica for metal ion pollution treatment (2009) J. Hazard. Mater., 164, pp. 229-234 
504 |a Lowell, S., (2004) Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density, p. 120. , Springer 
504 |a Innocenzi, P., Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview (2003) J. Non-Cryst. Solids, 316, pp. 309-319 
504 |a Socrates, G., (2001) Infrared Characteristic Group Frequencies, , John Wiley and Sons, Chichester 
504 |a Brunel, D., Blanc, A.C., Garrone, E., Onida, B., Rocchia, M., Nagy, J.B., Macquarrie, D.J., Spectroscopic studies on aminopropyl-containing micelle templated silicas. Comparison of grafted and co-condensation routes (2002) Stud. Surf. Sci. Catal., 142, pp. 1395-1402 
504 |a Zhmud, B.V., Sonnefeld, J., Aminopolysiloxane gels: production and properties (1996) J. Non-Cryst. Solids, 195, pp. 16-27 
504 |a Calvo, A., Joselevich, M., Soler-Illia, G.J.A.A., Williams, F.J., Chemical reactivity of amino-functionalized mesoporous silica thin films obtained by co-condensation and post-grafting routes (2009) Microporous Mesoporous Mater., 121, p. 67 
504 |a Caravajal, G.S., Leyden, D.E., Quinting, G.R., Maciel, G.E., Structural characterization of (3-aminopropyl)triethoxysilane-modified silicas by silicon-29 and carbon-13 nuclear magnetic resonance (1988) Anal. Chem., 60, pp. 1776-1786 
504 |a Lam, K.F., Chen, X., McKay, G., Yeung, K.L., Anion effect on Cu 2+ adsorption on NH2-MCM-41 (2008) Ind. Eng. Chem. Res., 47, pp. 9376-9383 
504 |a Da'na, E., Sayari, A., Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: equilibrium properties (2011) Chem. Eng. J., 166, pp. 445-453 
504 |a Fryxell, G.E., (2007) Environmental Applications of Nanomaterials. Synthesis, Sorbents and Sensors, p. 167. , Imperial College Press, London, G.E. Fryxell, G. Cao (Eds.) 
504 |a Ho, Y.-S., Review of second-order models for adsorption systems (2006) J. Hazard. Mater., B136, pp. 681-689 
504 |a Edgell, M.J., Baer, D.R., Castle, J.E., Biased referencing experiments for the XPS analysis of non-conducting materials (1986) Appl. Surf. Sci., 26, pp. 129-149 
504 |a Calvo, A., Angelomé, P.C., Sanchez, V.M., Scherlis, D., Williams, F.J., Soler-Illia, G.J.A.A., Mesoporous aminopropyl-functionalized hybrid thin films with modulable surface and environment-responsive behavior (2008) Chem. Mater., 20, pp. 4661-4668 
504 |a Chusuei, C.C., Brookshier, M.A., Goodman, D.W., Correlation of relative XPS shakeup intensity with CuO particle size (1999) Langmuir, 15, pp. 2806-2808 
504 |a Lim, M.H., Stein, A., Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials (1999) Chem. Mater., 11, pp. 3285-3295 
504 |a Angelomé, P.C., Soler-Illia, G.J.A.A., Organically modified transition-metal oxide mesoporous thin films and xerogels (2005) Chem. Mater., 17, pp. 322-331 
504 |a Wang, H., Harris, J.M., Surface diffusion of organosiloxane ligands covalently bound to silica (1994) J. Am. Chem. Soc., 116, pp. 5754-5761 
504 |a Kudryavtsev, G.V., Miltchenko, D.V., Yagov, V.V., Lopatkin, A.A., Ion sorption on modified silica surface (1990) J. Colloid Interface Sci., 140, pp. 114-122 
504 |a Da'na, E., Sayari, A., Effect of regeneration conditions on the cyclic performance of amine-modified SBA-15 for removal of copper from aqueous solutions: composite surface design methodology (2011) Desalination, 277, pp. 54-60 
504 |a Boissière, C., Martines, M.U., Prouzet, E., Larbot, A., On the specific filtration mechanism of a mesoporous silica membrane, prepared with non-connecting parallel pores (2005) J. Membr. Sci., 251, pp. 17-28 
504 |a Boissière, C., Martines, M.A.U., Kooyman, P.J., de Kruijff, T.R., Larbot, A., Prouzet, E., Ultrafiltration membrane made with mesoporous MSU-X silica (2003) Chem. Mater., 15, pp. 460-463 
506 |2 openaire  |e Política editorial 
520 3 |a Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption-desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15-1.75mmolCu(II)g -1), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the materials processing factors involved in the improved adsorption of Cu(II), its quantitative release and reusability of the material. © 2012 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: FSNANO 2010/007 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PME 00038, PAE 2004 22711, PICT 1848 
536 |a Detalles de la financiación: Authors thank ABTLUS for funding access to the LNLS synchrotron facility (proposals D11A-SAXS1-11060 and D04A-SXS-10808). Work funded by ANPCyT (grants PICT 1848 , PAE 2004 22711 , PME 00038 , FONARSEC FSNANO 2010/007 ). VL thanks CONICET and Rhein Chemie Argentina for a graduate student fellowship. GJAASI is a CONICET staff researcher. Authors thank Dr. M.C. Marchi for her assistance in electronic microscopy measurements, and Drs. H. Westfahl and M. Cardoso for their assistance in SAXS. Appendix A 
593 |a Gerencia Química, Centro Atómico Constituyentes, CNEA, Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina 
593 |a Rhein Chemie Argentina, Luis María Drago 1555, B1852LGS Burzaco, Buenos Aires, Argentina 
593 |a INIFTA-CONICET, Universidad Nacional de La Plata, CC 16 Sucursal 4, 1900, La Plata, Argentina 
593 |a DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina 
690 1 0 |a AMINOPROPYL FUNCTION 
690 1 0 |a HYBRID ADSORBENTS 
690 1 0 |a ION SCAVENGING 
690 1 0 |a MESOPOROUS MATERIALS 
690 1 0 |a REUSABLE ADSORBENT 
690 1 0 |a SOL-GEL 
690 1 0 |a WATER TREATMENT 
690 1 0 |a ACID MEDIA 
690 1 0 |a ACIDIC MEDIA 
690 1 0 |a ADSORPTION DESORPTION 
690 1 0 |a ADSORPTION EFFICIENCY 
690 1 0 |a ADSORPTION PROCESS 
690 1 0 |a AMINO GROUP 
690 1 0 |a AMINOPROPYL 
690 1 0 |a COPPER SULFATE 
690 1 0 |a CU ADSORPTION 
690 1 0 |a FUNCTIONALIZATIONS 
690 1 0 |a HIGH SURFACE AREA 
690 1 0 |a HYBRID ADSORBENTS 
690 1 0 |a LARGE PORES 
690 1 0 |a MATERIAL SURFACE 
690 1 0 |a MATERIALS PROCESSING 
690 1 0 |a MESOPOROUS SILICA 
690 1 0 |a ORGANIC FUNCTION 
690 1 0 |a ORGANIC GROUP 
690 1 0 |a SULFATE SOLUTIONS 
690 1 0 |a X-RAY PHOTOELECTRON SPECTROSCOPY STUDIES 
690 1 0 |a ADSORBENTS 
690 1 0 |a ADSORPTION 
690 1 0 |a DESORPTION 
690 1 0 |a HYBRID MATERIALS 
690 1 0 |a MATERIALS PROPERTIES 
690 1 0 |a METAL IONS 
690 1 0 |a PHOTOELECTRONS 
690 1 0 |a POLYCONDENSATION 
690 1 0 |a REUSABILITY 
690 1 0 |a SILICA 
690 1 0 |a SOL-GELS 
690 1 0 |a WATER TREATMENT 
690 1 0 |a X RAY PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a MESOPOROUS MATERIALS 
690 1 0 |a COPPER SULFATE 
690 1 0 |a SBA 15 N 
690 1 0 |a SILICON DIOXIDE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ADSORPTION 
690 1 0 |a CATION 
690 1 0 |a COMPLEXATION 
690 1 0 |a COPPER COMPOUND 
690 1 0 |a DESORPTION 
690 1 0 |a RECYCLING 
690 1 0 |a SCAVENGING (CHEMISTRY) 
690 1 0 |a SILICA 
690 1 0 |a SULFATE 
690 1 0 |a WASTEWATER 
690 1 0 |a WATER TREATMENT 
690 1 0 |a X-RAY SPECTROSCOPY 
690 1 0 |a ADSORPTION 
690 1 0 |a ARTICLE 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a MOLECULAR STABILITY 
690 1 0 |a POLYMERIZATION 
690 1 0 |a POROSITY 
690 1 0 |a SUBSTITUTION REACTION 
690 1 0 |a SYNTHESIS 
690 1 0 |a X RAY PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a ADSORPTION 
690 1 0 |a COPPER SULFATE 
690 1 0 |a MICROSCOPY, ELECTRON, SCANNING 
690 1 0 |a PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a POROSITY 
690 1 0 |a PROPYLAMINES 
690 1 0 |a RECYCLING 
690 1 0 |a SILICON DIOXIDE 
690 1 0 |a SPECTROSCOPY, FOURIER TRANSFORM INFRARED 
690 1 0 |a SURFACE PROPERTIES 
690 1 0 |a WATER POLLUTANTS, CHEMICAL 
690 1 0 |a WATER PURIFICATION 
700 1 |a Videla, M. 
700 1 |a Calvo, A. 
700 1 |a Requejo, Félix Gregorio 
700 1 |a Soler-Illia, G.J.A.A. 
773 0 |d 2012  |g v. 223-224  |h pp. 53-62  |p J. Hazard. Mater.  |x 03043894  |w (AR-BaUEN)CENRE-5603  |t Journal of Hazardous Materials 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861457320&doi=10.1016%2fj.jhazmat.2012.04.049&partnerID=40&md5=561406053150eb06bc1098780d18a06a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jhazmat.2012.04.049  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03043894_v223-224_n_p53_Lombardo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043894_v223-224_n_p53_Lombardo  |y Registro en la Biblioteca Digital 
961 |a paper_03043894_v223-224_n_p53_Lombardo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70430