Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06738caa a22006377a 4500 | ||
|---|---|---|---|
| 001 | PAPER-9415 | ||
| 003 | AR-BaUEN | ||
| 005 | 20250327092153.0 | ||
| 008 | 190411s2012 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84865066612 | |
| 030 | |a PRVDA | ||
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Fosco, César Daniel | |
| 245 | 1 | 0 | |a Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions |
| 260 | |c 2012 | ||
| 270 | 1 | 0 | |m Fosco, C.D.; Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, R8402AGP Bariloche, Argentina |
| 504 | |a Milonni, P.W., (1994) The Quantum Vacuum, , Academic Press, San Diego | ||
| 504 | |a Bordag, M., Mohideen, U., Mostepanenko, V.M., (2001) Phys. Rep., 353, p. 1. , PRPLCM 0370-1573 10.1016/S0370-1573(01)00015-1 | ||
| 504 | |a Milton, K.A., (2001) The Casimir Effect: Physical Manifestations of the Zero-Point Energy, , World Scientific, Singapore | ||
| 504 | |a Reynaud, S., Lambrecht, A., Genet, C., Jaekel, M.T., (2001) C. R. Acad. Sci. Paris Ser. IV, 2, p. 1287. , CRSPEA 1251-8050 | ||
| 504 | |a Milton, K.A., (2004) J. Phys. A, 37, p. 209. , JPHAC5 0305-4470 10.1088/0305-4470/37/38/R01 | ||
| 504 | |a Lamoreaux, S.K., (2005) Rep. Prog. Phys., 68, p. 201. , RPPHAG 0034-4885 10.1088/0034-4885/68/1/R04 | ||
| 504 | |a Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M., (2009) Advances in the Casimir Effect, , Oxford University Press, Oxford | ||
| 504 | |a Derjaguin, B.V., Abrikosova, I.I., (1957) Sov. Phys. JETP, 3, p. 819. , SPHJAR 0038-5646 | ||
| 504 | |a Derjaguin, B.V., (1960) Sci. Am., 203, p. 47. , SCAMAC 0036-8733 10.1038/scientificamerican0760-47 | ||
| 504 | |a Blocki, J., Randrup, J., Swiatecki, W.J., Tsang, C.F., (1977) Ann. Phys. (N.Y.), 105, p. 427. , APNYA6 0003-4916 10.1016/0003-4916(77)90249-4 | ||
| 504 | |a Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., (2011) Phys. Rev. D, 84, p. 105031. , PRVDAQ 1550-7998 10.1103/PhysRevD.84.105031 | ||
| 504 | |a Bimonte, G., Emig, T., Jaffe, R.L., Kardar, M., (2012) Europhys. Lett., 97, p. 50001. , EULEEJ 0295-5075 10.1209/0295-5075/97/50001 | ||
| 504 | |a Bimonte, G., Emig, T., Kardar, M., (2012) Appl. Phys. Lett., 100, p. 074110. , APPLAB 0003-6951 10.1063/1.3686903 | ||
| 504 | |a Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., Ann. Phys. (N.Y.), , APNYA6 0003-4916 | ||
| 504 | |a Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., (2012) Phys. Rev. D, 85, p. 125037. , PRVDAQ 1550-7998 10.1103/PhysRevD.85.125037 | ||
| 504 | |a Donoghue, J.F., (1994) Phys. Rev. D, 50, p. 3874. , PRVDAQ 0556-2821 10.1103/PhysRevD.50.3874 | ||
| 504 | |a MacHado, L.A.S., Maia Neto, P.A., (2002) Phys. Rev. D, 65, p. 125005. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.125005 | ||
| 504 | |a Durand, A.C., Ingold, G.L., Jaekel, M.T., Lambrecht, A., Maia Neto, P.A., Reynaud, S., (2012) Phys. Rev. A, 85, p. 052501. , PLRAAN 1050-2947 10.1103/PhysRevA.85.052501 | ||
| 504 | |a Weber, A., Gies, H., (2010) Phys. Rev. D, 82, p. 125019. , PRVDAQ 1550-7998 10.1103/PhysRevD.82.125019 | ||
| 504 | |a Emig, T., Hanke, A., Golestanian, R., Kardar, M., (2003) Phys. Rev. A, 67, p. 022114. , PLRAAN 1050-2947 10.1103/PhysRevA.67.022114 | ||
| 504 | |a Birrell, N.D., Davies, P.C.W., (1982) Quantum Fields in Curved Space, , Cambridge University Press, Cambridge, England | ||
| 504 | |a Fulling, S.A., (1989) Aspects of Quantum Field Theory in Curved Spacetime, 17. , London Mathematical Society Student Texts Vol. Cambridge University Press, Cambridge, United Kingdom | ||
| 504 | |a Parker, L., Toms, D., (2009) Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, , Cambridge University Press, Cambridge, United Kingdom | ||
| 504 | |a Sarabadani, J., Miri, M.F., (2006) Phys. Rev. A, 74, p. 023801. , PLRAAN 1050-2947 10.1103/PhysRevA.74.023801 | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next-to-leading-order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore, it is local and determined by a single coefficient. We show that the same holds true, if d*2, for a field which satisfies Neumann conditions. When d=2, the next-to-leading-order term becomes nonlocal in coordinate space, a manifestation of the existence of a gapless excitation (which does exist also for d>2, but produces subleading terms). We also consider a derivative expansion approach including thermal fluctuations of the scalar field. We show that, for Dirichlet mirrors, the next-to-leading- order term in the free energy is also local for any temperature T. Besides, it interpolates between the proper limits: when T→0, it tends to the one we had calculated for the Casimir energy in d dimensions, while for T→∞, it corresponds to the one for a theory in d-1 dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in d=3, we find a nonlocal next-to-leading-order term for any T>0. © 2012 American Physical Society. |l eng | |
| 593 | |a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, R8402AGP Bariloche, Argentina | ||
| 593 | |a Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche, Argentina | ||
| 593 | |a Departamento de Física Juan José Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón i, 1428 Buenos Aires, Argentina | ||
| 700 | 1 | |a Lombardo, F.C. | |
| 700 | 1 | |a Mazzitelli, F.D. | |
| 773 | 0 | |d 2012 |g v. 86 |k n. 4 |p Phys Rev D Part Fields Gravit Cosmol |x 15507998 |t Physical Review D - Particles, Fields, Gravitation and Cosmology | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865066612&doi=10.1103%2fPhysRevD.86.045021&partnerID=40&md5=733671135798b7c3358c8cb1fa23146a |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevD.86.045021 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_15507998_v86_n4_p_Fosco |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v86_n4_p_Fosco |y Registro en la Biblioteca Digital |
| 961 | |a paper_15507998_v86_n4_p_Fosco |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 70368 | ||