Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions

We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fosco, César Daniel
Otros Autores: Lombardo, F.C, Mazzitelli, F.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06738caa a22006377a 4500
001 PAPER-9415
003 AR-BaUEN
005 20250327092153.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84865066612 
030 |a PRVDA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Fosco, César Daniel 
245 1 0 |a Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions 
260 |c 2012 
270 1 0 |m Fosco, C.D.; Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, R8402AGP Bariloche, Argentina 
504 |a Milonni, P.W., (1994) The Quantum Vacuum, , Academic Press, San Diego 
504 |a Bordag, M., Mohideen, U., Mostepanenko, V.M., (2001) Phys. Rep., 353, p. 1. , PRPLCM 0370-1573 10.1016/S0370-1573(01)00015-1 
504 |a Milton, K.A., (2001) The Casimir Effect: Physical Manifestations of the Zero-Point Energy, , World Scientific, Singapore 
504 |a Reynaud, S., Lambrecht, A., Genet, C., Jaekel, M.T., (2001) C. R. Acad. Sci. Paris Ser. IV, 2, p. 1287. , CRSPEA 1251-8050 
504 |a Milton, K.A., (2004) J. Phys. A, 37, p. 209. , JPHAC5 0305-4470 10.1088/0305-4470/37/38/R01 
504 |a Lamoreaux, S.K., (2005) Rep. Prog. Phys., 68, p. 201. , RPPHAG 0034-4885 10.1088/0034-4885/68/1/R04 
504 |a Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M., (2009) Advances in the Casimir Effect, , Oxford University Press, Oxford 
504 |a Derjaguin, B.V., Abrikosova, I.I., (1957) Sov. Phys. JETP, 3, p. 819. , SPHJAR 0038-5646 
504 |a Derjaguin, B.V., (1960) Sci. Am., 203, p. 47. , SCAMAC 0036-8733 10.1038/scientificamerican0760-47 
504 |a Blocki, J., Randrup, J., Swiatecki, W.J., Tsang, C.F., (1977) Ann. Phys. (N.Y.), 105, p. 427. , APNYA6 0003-4916 10.1016/0003-4916(77)90249-4 
504 |a Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., (2011) Phys. Rev. D, 84, p. 105031. , PRVDAQ 1550-7998 10.1103/PhysRevD.84.105031 
504 |a Bimonte, G., Emig, T., Jaffe, R.L., Kardar, M., (2012) Europhys. Lett., 97, p. 50001. , EULEEJ 0295-5075 10.1209/0295-5075/97/50001 
504 |a Bimonte, G., Emig, T., Kardar, M., (2012) Appl. Phys. Lett., 100, p. 074110. , APPLAB 0003-6951 10.1063/1.3686903 
504 |a Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., Ann. Phys. (N.Y.), , APNYA6 0003-4916 
504 |a Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., (2012) Phys. Rev. D, 85, p. 125037. , PRVDAQ 1550-7998 10.1103/PhysRevD.85.125037 
504 |a Donoghue, J.F., (1994) Phys. Rev. D, 50, p. 3874. , PRVDAQ 0556-2821 10.1103/PhysRevD.50.3874 
504 |a MacHado, L.A.S., Maia Neto, P.A., (2002) Phys. Rev. D, 65, p. 125005. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.125005 
504 |a Durand, A.C., Ingold, G.L., Jaekel, M.T., Lambrecht, A., Maia Neto, P.A., Reynaud, S., (2012) Phys. Rev. A, 85, p. 052501. , PLRAAN 1050-2947 10.1103/PhysRevA.85.052501 
504 |a Weber, A., Gies, H., (2010) Phys. Rev. D, 82, p. 125019. , PRVDAQ 1550-7998 10.1103/PhysRevD.82.125019 
504 |a Emig, T., Hanke, A., Golestanian, R., Kardar, M., (2003) Phys. Rev. A, 67, p. 022114. , PLRAAN 1050-2947 10.1103/PhysRevA.67.022114 
504 |a Birrell, N.D., Davies, P.C.W., (1982) Quantum Fields in Curved Space, , Cambridge University Press, Cambridge, England 
504 |a Fulling, S.A., (1989) Aspects of Quantum Field Theory in Curved Spacetime, 17. , London Mathematical Society Student Texts Vol. Cambridge University Press, Cambridge, United Kingdom 
504 |a Parker, L., Toms, D., (2009) Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, , Cambridge University Press, Cambridge, United Kingdom 
504 |a Sarabadani, J., Miri, M.F., (2006) Phys. Rev. A, 74, p. 023801. , PLRAAN 1050-2947 10.1103/PhysRevA.74.023801 
506 |2 openaire  |e Política editorial 
520 3 |a We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next-to-leading-order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore, it is local and determined by a single coefficient. We show that the same holds true, if d*2, for a field which satisfies Neumann conditions. When d=2, the next-to-leading-order term becomes nonlocal in coordinate space, a manifestation of the existence of a gapless excitation (which does exist also for d>2, but produces subleading terms). We also consider a derivative expansion approach including thermal fluctuations of the scalar field. We show that, for Dirichlet mirrors, the next-to-leading- order term in the free energy is also local for any temperature T. Besides, it interpolates between the proper limits: when T→0, it tends to the one we had calculated for the Casimir energy in d dimensions, while for T→∞, it corresponds to the one for a theory in d-1 dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in d=3, we find a nonlocal next-to-leading-order term for any T>0. © 2012 American Physical Society.  |l eng 
593 |a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, R8402AGP Bariloche, Argentina 
593 |a Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche, Argentina 
593 |a Departamento de Física Juan José Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón i, 1428 Buenos Aires, Argentina 
700 1 |a Lombardo, F.C. 
700 1 |a Mazzitelli, F.D. 
773 0 |d 2012  |g v. 86  |k n. 4  |p Phys Rev D Part Fields Gravit Cosmol  |x 15507998  |t Physical Review D - Particles, Fields, Gravitation and Cosmology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865066612&doi=10.1103%2fPhysRevD.86.045021&partnerID=40&md5=733671135798b7c3358c8cb1fa23146a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevD.86.045021  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15507998_v86_n4_p_Fosco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v86_n4_p_Fosco  |y Registro en la Biblioteca Digital 
961 |a paper_15507998_v86_n4_p_Fosco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70368