Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation

It is widely known that pre-training systemic administration of the muscarinic antagonist scopolamine (SCP) (0.5mg/kg, i.p.) leads to anterograde memory impairment in retention tests. The administration of the α7-nicotinic receptor agonist choline (Ch) in the dorsal hippocampus (0.8μg/hippocampus) i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Blake, M.G
Otros Autores: Boccia, M.M, Krawczyk, M.C, Delorenzi, A., Baratti, C.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17312caa a22016697a 4500
001 PAPER-9364
003 AR-BaUEN
005 20230518203917.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84865298921 
024 7 |2 cas  |a choline bitartrate, 87-67-2; scopolamine, 138-12-5, 51-34-3, 55-16-3; Choline, 62-49-7; Muscarinic Antagonists; Nicotinic Agonists; Nootropic Agents; Scopolamine Hydrobromide, 51-34-3 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NLMEF 
100 1 |a Blake, M.G. 
245 1 0 |a Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation 
260 |c 2012 
270 1 0 |m Blake, M.G.Junín 956 5th floor, C1113, Buenos Aires, Argentina; email: marianoblake@yahoo.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Alberini, C.M., Mechanisms of memory stabilization: Are consolidation and reconsolidation similar or distinct processes? (2005) Trends in Neuroscience, 28, pp. 51-56 
504 |a Alberini, C.M., Milekic, M.H., Tronel, S., Mechanisms of memory stabilization and de-stabilization (2006) Cellular and Molecular Life Sciences, 63 (9), pp. 999-1008 
504 |a Alberini, C.M., The role of reconsolidation and the dynamic process of long-term memory formation and storage (2011) Frontiers in Behavioral Neuroscience, 5, pp. 1-10 
504 |a Albuquerque, E.X., Pereira, E.F.R., Alkongdon, M., Rogers, S.W., Mammalian nicotinic acetylcholine receptors: From structure to function (2009) Physiological Reviews, 89 (1), pp. 73-120 
504 |a Baratti, C.M., Boccia, M.M., Blake, M.G., Acosta, G.B., Reactivated memory of an inhibitory avoidance response in mice is sensitive to a nitric oxide synthase inhibitor (2008) Neurobiology of Learning and Memory, 89 (4), pp. 426-440 
504 |a Baratti, C.M., Boccia, M.M., Blake, M.G., Pharmacological effects and behavioral interventions on memory consolidation and reconsolidation (2009) Brazilian Journal of Medical and Biological Research, 42 (2), pp. 148-154 
504 |a Bartus, R.T., Dean, R.L., Beer, B., Lippa, A.S., The cholinergic hypothesis of geriatric memory dysfunction (1982) Science, 217 (4558), pp. 408-414 
504 |a Berón de Astrada, M., Maldonado, H., Two related forms of long-term habituation in the crab Chasmagnathus are differentially affected by scopolamine (1999) Pharmacology, Biochemistry, and Behavior, 63 (1), pp. 109-118 
504 |a Blake, M.G., Boccia, M.M., Baratti, C.M., Behavioral differences on memory retrieval between two variants of step-through inhibitory avoidance task in mice (2008) Neuroscience Letters, 444 (1), pp. 102-105 
504 |a Blake, M.G., Boccia, M.M., Krawczyk, M.C., Baratti, C.M., Scopolamine prevents retrograde memory interference between two different learning tasks (2011) Physiology and Behavior, 102 (3-4), pp. 332-337 
504 |a Boccia, M.M., Blake, M.G., Acosta, G.B., Baratti, C.M., Memory consolidation and reconsolidation of an inhibitory avoidance response in mice. Effects of i.c.v. injections of hemicholinium-3 (2004) Neuroscience, 124 (4), pp. 735-741 
504 |a Boccia, M.M., Blake, M.G., Acosta, G.B., Baratti, C.M., Post-retrieval effects of icv infusions of hemicholinium in mice are dependent on the age of the original memory (2006) Learning and Memory, 13 (3), pp. 376-381 
504 |a Boccia, M.M., Freudenthal, R., Blake, M.M., de la Fuente, V., Acosta, G.B., Baratti, C.M., Activation of hippocampal nuclear factor-κB by retrieval is required for memory reconsolidation (2007) The Journal of Neuroscience, 27 (49), pp. 13436-13445 
504 |a Boccia, M.M., Blake, M.G., Krawczyk, M.C., Baratti, C.M., Hippocampal α7 nicotinic receptors modulate memory reconsolidation of an inhibitory avoidance task in mice (2010) Neuroscience, 171 (2), pp. 531-543 
504 |a Bogacz, R., Optimal decision-making theories: Linking neurobiology with behavior (2007) Trends in Cognitive Sciences, 11 (3), pp. 118-125 
504 |a Cahill, L., McGaugh, J.L., Weinberger, N.M., The neurobiology of learning and memory: Some reminders to remember (2001) Trends in Neurosciences, 24 (10), pp. 578-581 
504 |a Clark, L., Cools, R., Robbins, T.W., The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning (2004) Brain and Cognition, 55 (1), pp. 41-53 
504 |a Corkin, S., What's new with the amnesic patient H.M.? (2002) Nature Reviews Neuroscience, 3 (2), pp. 153-160 
504 |a Court, J., Martin-Ruiz, C., Piggott, M., Spurden, D., Griffiths, M., Perry, E., Nicotinic receptor abnormalities in Alzheimer's disease (2001) Biological Psychiatry, 49 (3), pp. 175-184 
504 |a Decker, M.W., McGaugh, J.L., Effects of concurrent manipulations of cholinergic and noradrenergic function on learning and retention in mice (1989) Brain Research, 477 (1-2), pp. 29-37 
504 |a Decker, M.W., Tran, T., McGaugh, J.L., A comparison of the effects of scopolamine and diazepam on acquisition and retention of inhibitory avoidance in mice (1990) Psychopharmacology (Berl), 100 (4), pp. 515-521 
504 |a Dudai, Y., Reconsolidation: The advantage of being refocused (2006) Current Opinion in Neurobiology, 16 (2), pp. 174-178 
504 |a Ebert, U., Kirch, W., Scopolamine model of dementia: Electroencephalogram findings and cognitive performance (1998) European Journal of Clinical Investigation, 28 (11), pp. 944-949 
504 |a Flurkey, K., Currer, J.M., Harrison, D.E., The mouse in aging research (2007) The mouse in biomedical research, pp. 637-672. , Elsevier, Burlington, J.G. Fox (Ed.) 
504 |a Francis, P.T., Palmer, A.M., Snape, M., Wilcock, G.K., The cholinergic hypothesis of Alzheimer's disease: A review of progress (1999) Journal of Neurology, Neurosurgery, and Psychiatry, 66 (2), pp. 137-147 
504 |a Franklin, K.B.J., Paxinos, G., (1997) The mouse brain in stereotaxic coordinates, , Academic Press, London 
504 |a Frumin, M.J., Herekar, V.R., Jarvik, M.E., Amnesic actions of diazepam and scopolamine in man (1976) Anesthesiology, 45 (4), pp. 406-412 
504 |a Ghoneim, M.M., Mewaldt, S.P., Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory (1975) Psychopharmacologia, 44 (3), pp. 257-262 
504 |a Ghoneim, M.M., Mewaldt, S.P., Studies on human memory: The interactions of diazepam, scopolamine, and physostigmine (1977) Psychopharmacology (Berl), 52 (1), pp. 1-6 
504 |a Giacobini, E., Cholinergic receptors in human brain: Effects of aging and Alzheimer disease (1990) Journal of Neuroscience Research, 27 (4), pp. 548-560 
504 |a Gold, P.E., Haycock, J.W., Marri, J., McGaugh, J.L., Retrograde amnesia and the "reminder effect": An alternative interpretation (1973) Science, 180 (4091), pp. 1199-1201 
504 |a Gold, P.E., van Buskirk, R., Effects of posttrial hormone injections on memory processes (1976) Hormones and Behavior, 7 (4), pp. 509-517 
504 |a Hasselmo, M.E., Stern, C.E., Mechanisms underlying working memory for novel information (2006) Trends in Cognitive Sciences, 10 (11), pp. 487-493 
504 |a Hasselmo, M.E., Sarter, M., Modes and models of forebrain cholinergic neuromodulation of cognition (2011) Neuropsychopharmacology, 36 (1), pp. 52-73 
504 |a Haycock, J.W., Gold, P.E., Macri, J., McGaugh, J.L., Noncontingent footshock attenuation of retrograde amnesia: A generalization effect (1973) Physiology and Behavior, 11 (1), pp. 99-102 
504 |a Izquierdo, I., Mechanism of action of scopolamine as an amnestic (1989) Trends in Pharmacological Sciences, 10 (5), pp. 175-177 
504 |a Izquierdo, I., McGaugh, J.L., Behavioural pharmacology and its contribution to the molecular basis of memory consolidation (2000) Behavioural Pharmacology, 11 (7-8), pp. 517-534 
504 |a Khader, P.H., Pachur, T., Meier, S., Bien, S., Jost, K., Rösler, F., Memory-based decision-making with heuristics: Evidence for a controlled activation of memory representations (2011) Journal of Cognitive Neuroscience, 23 (11), pp. 3540-3554 
504 |a Mattson, M.P., Calabrese, E.J., Hormesis (2010) A revolution in Biology, Toxicology and Medicine, , Springer, New York 
504 |a McGaugh, J.L., Time-dependent processes in memory storage (1966) Science, 153 (3742), pp. 1351-1358 
504 |a McGaugh, J.L., Memory - A century of consolidation (2000) Science, 287 (5451), pp. 248-251 
504 |a Milekic, M.H., Alberini, C.M., Temporally graded requirement for protein synthesis following memory reactivation (2002) Neuron, 36 (3), pp. 521-525 
504 |a Misanin, J.R., Miller, R.R., Lewis, D.J., Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace (1968) Science, 160 (3827), pp. 554-555 
504 |a Myers, K.M., Davis, M., Behavioral and neural analysis of extinction (2002) Neuron, 36 (4), pp. 567-584 
504 |a Nader, K., Schafe, G.E., Le Doux, J.E., Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval (2000) Nature, 406 (6797), pp. 722-726 
504 |a Nader, K., Wang, S.H., Fading in (2006) Learning and Memory, 13 (5), pp. 530-535 
504 |a Neugroschl, J., Wang, S., Alzheimer's disease: Diagnosis and treatment across the spectrum of disease severity (2011) Mt Sinai Journal of Medicine, 78 (4), pp. 596-612 
504 |a Ohno, M., Watanabe, S., Interactive processing between glutamatergic and cholinergic systems involved in inhibitory avoidance learning of rats (1996) European Journal of Pharmacology, 312 (2), pp. 145-147 
504 |a Ortega, A., del Guante, M.A., Prado-Alcalá, R.A., Alemán, V., Changes in rat brain muscarinic receptors after inhibitory avoidance learning (1996) Life Sciences, 58 (9), pp. 799-809 
504 |a Parvez, K., Stewart, O., Sangha, S., Lukowiak, K., Boosting intermediate-term into long-term memory (2005) Journal of Experimental Biology, 208 (PART 8), pp. 1525-1536 
504 |a Perry, E.K., Morris, C.M., Court, J.A., Cheng, A., Fairbairn, A.F., McKeith, I.G., Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: Possible index of early neuropathology (1995) Neuroscience, 64 (2), pp. 385-395 
504 |a Philips, G.T., Tzvetkova, E.I., Marinesco, S., Carew, T.J., Latent memory for sensitization in Aplysia (2006) Learning and Memory, 13 (2), pp. 224-229 
504 |a Przybyslawski, J., Sara, S.J., Reconsolidation of memory after its reactivation (1997) Behavioural Brain Research, 84 (1-2), pp. 241-246 
504 |a Querfurth, H.W., LaFerla, F.M., Alzheimer's Disease (2010) The New England Journal of Medicine, 362 (4), pp. 329-344 
504 |a Quirarte, G.L., Cruz-Morales, S.E., Cepeda, A., Garcia-Montanez, M., Roldán-Roldán, G., Prado-Alcalá, R.A., Effects of central muscarinic blockade on passive avoidance: Anterograde amnesia, state dependency, or both? (1994) Behavioral and Neural Biology, 62 (1), pp. 15-20 
504 |a Quirion, R., Cholinergic markers in Alzheimer disease and autoregulation of acetycholine release (1993) Journal of Psychiatry and Neuroscience, 18 (5), pp. 226-234 
504 |a Rescorla, R.A., Behavioral studies of Pavlovian conditioning (1988) Annual Review of Neuroscience, 11, pp. 329-352 
504 |a Ribot, T., (1881) Les maladies de la memoire, , Appleton-Century-Crofts, New York 
504 |a Richardson, J.S., Miller, P.S., Lemay, J.S., Jyu, C.A., Neil, S.G., Kilduff, C.J., Mental dysfunction and the blockade of muscarinic receptors in the brains of the normal elderly (1985) Progress in Neuro-psychopharmacology and Biological Psychiatry, 9 (5-6), pp. 651-654 
504 |a Roldán, G., Bolaños-Badillo, E., González-Sánchez, H., Quirarte, G.L., Prado-Alcalá, R.A., Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats (1997) Neuroscience Letters, 230 (2), pp. 93-96 
504 |a Roozendaal, B., McGaugh, J.L., Memory modulation (2011) Behavioral Neuroscience, 125 (6), pp. 797-824 
504 |a Rush, D.K., Scopolamine amnesia of passive avoidance: A deficit of information acquisition (1988) Behavioral and Neural Biology, 50 (3), pp. 255-274 
504 |a Siegel, S., (1956) Non-parametric statistics for the behavioral sciences, , McGraw-Hill, New York 
504 |a Squire, L.R., Lost forever or temporarily misplaced? The long debate about the nature of memory impairment (2006) Learning and Memory, 13 (5), pp. 522-529 
504 |a Squire, L.R., Wixted, J.T., The cognitive neuroscience of human memory since H.M (2011) Annual Review of Neuroscience, 34, pp. 259-288 
504 |a Terazima, E., Yoshino, M., Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain (2010) Journal of Insect Physiology, 56 (12), pp. 1746-1754 
504 |a Tronson, N.C., Taylor, J.R., Molecular mechanisms of memory reconsolidation (2007) Nature Reviews Neuroscience, 8 (4), pp. 262-275 
504 |a Weinberger, N.M., Food for thought: Honeybee foraging, memory, and acetylcholine (2006) Scienc's STKE, 2006 (336), pp. pe23 
520 3 |a It is widely known that pre-training systemic administration of the muscarinic antagonist scopolamine (SCP) (0.5mg/kg, i.p.) leads to anterograde memory impairment in retention tests. The administration of the α7-nicotinic receptor agonist choline (Ch) in the dorsal hippocampus (0.8μg/hippocampus) immediately after memory reactivation allowed recovery from scopolamine-induced memory impairment. This effect of Ch was time-dependent, and retention performance was not affected in drug-treated mice that were not subjected to memory reactivation, suggesting that the performance effects are not due to non-specific effects of the drug. The effects of Ch also depended on the age of the reactivated memory. Altogether, our results suggest that Ch exerts its effects by modulating memory reconsolidation, and that the memory impairment induced by low doses of SCP is a memory expression failure and not a storage deficit. Therefore, reconsolidation, among other functions, might serve to change memory expression in later tests. Summarizing, our results open new avenues about the behavioral significance and the physiological functions of memory reconsolidation, providing new strategies for recovering memories from some types of amnesia. © 2012 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: This work was supported by Grant B018 from the University of Buenos Aires. MGB, MMB, AD and CMB are members of CONICET. MCK is a fellow of CONICET. 
593 |a Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina 
593 |a Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a CHOLINERGIC SYSTEM 
690 1 0 |a MEMORY EXPRESSION 
690 1 0 |a MEMORY RECONSOLIDATION 
690 1 0 |a MEMORY RETRIEVAL 
690 1 0 |a SCOPOLAMINE-INDUCED AMNESIA 
690 1 0 |a CHOLINE BITARTRATE 
690 1 0 |a SCOPOLAMINE 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ARTICLE 
690 1 0 |a BEHAVIOR 
690 1 0 |a BRAIN FUNCTION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DRUG EFFECT 
690 1 0 |a MALE 
690 1 0 |a MEMORY CONSOLIDATION 
690 1 0 |a MEMORY DISORDER 
690 1 0 |a MENTAL PERFORMANCE 
690 1 0 |a MENTAL TASK 
690 1 0 |a MENTAL TEST 
690 1 0 |a MOUSE 
690 1 0 |a NEUROMODULATION 
690 1 0 |a NONHUMAN 
690 1 0 |a TIME 
690 1 0 |a TREATMENT RESPONSE 
690 1 0 |a ANIMALS 
690 1 0 |a AVOIDANCE LEARNING 
690 1 0 |a CHOLINE 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a MALE 
690 1 0 |a MEMORY 
690 1 0 |a MEMORY DISORDERS 
690 1 0 |a MICE 
690 1 0 |a MUSCARINIC ANTAGONISTS 
690 1 0 |a NICOTINIC AGONISTS 
690 1 0 |a NOOTROPIC AGENTS 
690 1 0 |a RETENTION (PSYCHOLOGY) 
690 1 0 |a SCOPOLAMINE HYDROBROMIDE 
690 1 0 |a TIME FACTORS 
700 1 |a Boccia, M.M. 
700 1 |a Krawczyk, M.C. 
700 1 |a Delorenzi, A. 
700 1 |a Baratti, C.M. 
773 0 |d 2012  |g v. 98  |h pp. 112-121  |k n. 2  |p Neurobiol. Learn. Mem.  |x 10747427  |w (AR-BaUEN)CENRE-6249  |t Neurobiology of Learning and Memory 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865298921&doi=10.1016%2fj.nlm.2012.07.001&partnerID=40&md5=c7c6d50b454b7866d53ce8dcb04254b0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.nlm.2012.07.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10747427_v98_n2_p112_Blake  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10747427_v98_n2_p112_Blake  |y Registro en la Biblioteca Digital 
961 |a paper_10747427_v98_n2_p112_Blake  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70317