Evaluation of hematin-catalyzed Orange II degradation as a potential alternative to horseradish peroxidase

The catalytic performance of hematin was evaluated for the decolorization of solutions of the monoazoic textile dye Orange II in comparison to horseradish peroxidase (HRP) by means of response surface methodology. Conversions were affected mostly by the pH of the medium, followed by the catalyst and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Córdoba, A.
Otros Autores: Magario, I., Ferreira, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 24278caa a22019817a 4500
001 PAPER-9361
003 AR-BaUEN
005 20230518203916.0
008 140217s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84864378578 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IBBIE 
100 1 |a Córdoba, A. 
245 1 0 |a Evaluation of hematin-catalyzed Orange II degradation as a potential alternative to horseradish peroxidase 
260 |c 2012 
270 1 0 |m Córdoba, A.; Investigacion y Desarrollo en Tecnologia Quimica (IDTQ), Grupo Vinculado PLAPIQUI - CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, X5016GCA Ciudad Universitaria, Córdoba, Provincia de Córdoba, Argentina; email: agostinacordoba@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Abbott, L.C., Batchelor, S.N., Lindsay Smith, J.R., Moore, J.N., Reductive reaction mechanisms of the azo dye Orange II in aqueous solution and in cellulose: from radical intermediates to products (2009) Journal of Physical Chemistry A, 113, pp. 6091-6103 
504 |a Akkara, J.A., Wang, J., Yang, D.P., Gonsalves, K.E., Hematin-catalyzed polymerization of phenol compounds (2000) Macromolecules, 33, pp. 2377-2382 
504 |a Aleboyeh, A., Moussa, Y., Aleboyeh, H., Kinetics of oxidative decolourisation of Acid Orange 7 in water by ultraviolet radiation in the presence of hydrogen peroxide (2005) Separation and Purification Technology, 43, pp. 143-148 
504 |a Ambrosio, K., Rueda, E., Ferreira, M.L., Magnetite-supported hematin as a biomimetic of horseradish peroxidase in phenol removal by polymerization (2004) Biocatalysis and Biotransformation, 22, pp. 35-44 
504 |a (1998) Standard Methods for the Examination of Water and Wastewater, , American Public Health Association, Washington DC, APHA 
504 |a Asakura, T., Ishida, M., A nuclear magnetic resonance study on aggregation of an azo dye, Orange II, in aqueous solution (1989) Journal of Colloid and Interface Science, 130, pp. 184-189 
504 |a Badawy, M.I., Ali, M.E.M., Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater (2006) Journal of Hazardous Materials, 136, pp. 961-966 
504 |a Bandara, J., Kiwi, J., Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange II (1999) New Journal of Chemistry, 23, pp. 717-724 
504 |a Bandara, J., Morrison, C., Kiwi, J., Pulgarin, C., Peringer, P., Degradation/decoloration of concentrated solutions of Orange II. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents (1996) Journal of Photochemistry and Photobiology A: Chemistry, 99, pp. 57-66 
504 |a Bandara, J., Nadtochenko, V., Kiwi, J., Pulgarin, C., Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (Orange II) via advanced oxidation technologies (1997) Water Science and Technology, 35, pp. 87-93 
504 |a Benoit-Marquié, F., Puech-Costes, E., Braun, A.M., Oliveros, E., Maurette, M.T., Photocatalytic degradation of 2,4-dihydroxybenzoic acid in water: efficiency optimization and mechanistic investigations (1997) Journal of Photochemistry and Photobiology A: Chemistry, 108, pp. 65-71 
504 |a Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., Response surface methodology (RSM) as a tool for optimization in analytical chemistry (2008) Talanta, 76, pp. 965-977 
504 |a Berglund, G.I., Carlsson, G.H., Smith, A.T., Szoke, H., Henriksen, A., Hajdu, J., (2002) Journal. Nature, 417, p. 463 
504 |a Cardona, M., Osorio, J., Quintero, J., Degradation of industrial dyes with white rot fungi (2009) Revista Facultad De Ingeniería, 48, pp. 27-37 
504 |a Chen, J.X., Zhu, L., Degradation mechanism of Orange II in UV-Fenton process with hydroxyl-Fe-pillared bentonite as heterogeneous catalyst (2010) International Conference on Advances in Energy Engineering; Beijing., pp. 281-284. , ICAEE 5557562 
504 |a Conley, R.T., (1979) Espectroscopia Infrarroja, pp. 144-177. , Alhambra, Spain 
504 |a Cunningham, I.D., Danks, T.N., Hay, J.N., Hamerton, I., Gunathilagan, S., Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide (2001) Tetrahedron, 57, pp. 6847-6853 
504 |a Da Re, V., Papinutti, L., Forchiassin, F., Levin, L., Biobleaching of loblolly pine kraft pulp with Trametes trogii culture fluids followed by a peroxide stage. Application of Doehlert experimental design to evaluate process parameters (2010) Enzyme and Microbial Technology, 46, pp. 281-286 
504 |a Daneshvar, N., Aber, S., Hosseinzadeh, F., Study of C.I. Acid Orange 7 removal in contaminated water by photo oxidation processes (2008) Global Nest Journal, 10, pp. 16-23 
504 |a De Villiers, K.A., Kaschula, C.H., Egan, T.J., Marques, H.M., Speciation and structure of ferriprotoporphyrin IX in aqueous solution: spectroscopic and diffusion measurements demonstrate dimerization, but not μ-oxo dimer formation (2007) Journal of Biological Inorganic Chemistry, 12, pp. 101-117 
504 |a Deyhimi, F., Nami, F., Modeling and optimization of the bi-substrate peroxidase-enzyme catalyzed potentiometric assay of hydrogen peroxide by response surface methodology with a central composite rotatable design (2011) Journal of Molecular Catalysis B: Enzymatic, 68, pp. 162-167 
504 |a Doehlert, D., Uniform shell design (1970) Applied Statistics, 19, pp. 231-239 
504 |a Dos Santos, A.B., Cervantes, F.J., Van Lier, J.B., Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology (2007) Bioresource Technology, 98, pp. 2369-2385 
504 |a Duarte, F., Madeira, L.M., Fenton- and photo-Fenton-like degradation of a textile dye by heterogeneous processes with Fe/ZSM-5 zeolite (2010) Separation Science and Technology, 45, pp. 1512-1520 
504 |a Dunford, H.B., (1999) Heme Peroxidases, , John Wiley, USA 
504 |a (2003) European Commission Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques for the Textiles Industry 
504 |a Fang, H., Wenrong, H., Yuezhong, L., Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS (2004) Water Research, 38, pp. 3596-3604 
504 |a Feng, J., Hu, X., Yue, P.L., Zhu, H.Y., Lu, G.Q., Degradation of azo-dye Orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst (2003) Industrial and Engineering Chemistry Research, 42, pp. 2058-2066 
504 |a Feng, W., Nansheng, D., Helin, H., Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions (2000) Chemosphere, 41, pp. 1233-1238 
504 |a Forgacs, E., Cserháti, T., Oros, G., Removal of synthetic dyes from wastewaters: a review (2004) Environment International, 30, pp. 953-971 
504 |a Galindo, C., Jacques, P., Kalt, A., Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2. Comparative mechanistic and kinetic investigations (2000) Journal of Photochemistry and Photobiology A: Chemistry, 130, pp. 35-47 
504 |a Gavril, M., Hodson, P.V., Chemical evidence for the mechanism of the biodecoloration of Amaranth by Trametes versicolor (2007) World Journal of Microbiology and Biotechnology, 23, pp. 103-124 
504 |a Ghasempur, S., Torabi, S.F., Ranaei-Siadat, S.O., Jalali-Heravi, M., Ghaemi, N., Khajeh, K., Optimization of peroxidase-catalyzed oxidative coupling process for phenol removal from wastewater using response surface methodology (2007) Environmental Science and Technology, 41, pp. 7073-7079 
504 |a Gutierrez Pulido, H., De la Vara Salazar, R., (2008) Análisis y Diseño de Experimentos, , McGraw-Hill Interamericana, Mexico D.F 
504 |a Hai, F.I., Yamamoto, K., Nakajima, F., Fukushi, K., Factors governing performance of continuous fungal reactor during non-sterile operation - the case of a membrane bioreactor treating textile wastewater (2009) Chemosphere, 74, pp. 810-817 
504 |a Hartmann, M., Kullmann, S., Keller, H., Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials (2010) Journal of Materials Chemistry, 20, pp. 9002-9017 
504 |a Hernández-Ruiz, J., Arnao, M.B., Hiner, A.N.P., García-Cánovas, F., Acosta, M., Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2 (2001) Biochemical Journal, 354, pp. 107-114 
504 |a Herney-Ramirez, J., Vicente, M.A., Madeira, L.M., Heterogeneous photo-fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review (2010) Applied Catalysis B: Environmental, 98, pp. 10-26 
504 |a Hou, M., Li, F., Liu, X., Wang, X., Wan, H., The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron (2007) Journal of Hazardous Materials, 145, pp. 305-314 
504 |a Hunger, K., (2003) Industrial Dyes: Chemistry, Properties and Applications, , Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 
504 |a Kadla, J.F., Chang, H.M., The reactions of peroxides with lignin and lignin model compounds (2001) ACS Symposium Series, 785, pp. 108-129 
504 |a Kapeluich, Y.L., Rubtsova, M.Y., Egorov, A.M., Enhanced chemiluminescence reaction applied to the study of horseradish peroxidase stability in the course of p-iodophenol oxidation (1997) Journal of Luminescence, 12, pp. 299-308 
504 |a Kim, G.Y., Lee, K.B., Cho, S.H., Shim, J., Moon, S.H., Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme (2005) Journal of Hazardous Materials, 126, pp. 183-188 
504 |a Lam, F.L.Y., Hu, X., A high performance bimetallic catalyst for photo-Fenton oxidation of Orange II over a wide pH range (2007) Catalysis Communications, 8, pp. 2125-2129 
504 |a Li, G., Qu, J., Zhang, X., Liu, H., Electrochemically assisted photocatalytic degradation of Orange II: influence of initial pH values (2006) Journal of Molecular Catalysis A: Chemical, 259, pp. 238-244 
504 |a Li, X., Jia, R., Li, P., Ang, S., Response surface analysis for enzymatic decolorization of Congo red by manganese peroxidase (2009) Journal of Molecular Catalysis B: Enzymatic, 56, pp. 1-6 
504 |a Liang, X., Zhong, Y., Zhu, S., Zhu, J., Yuan, P., He, H., Zhang, J., The decolorization of Acid Orange II in non-homogeneous Fenton reaction catalyzed by natural vanadium-titanium magnetite (2010) Journal of Hazardous Materials, 181, pp. 112-120 
504 |a Lodha, B., Chaudhari, S., Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions (2007) Journal of Hazardous Materials, 148, pp. 459-466 
504 |a López, C., Valade, A.G., Combourieu, B., Mielgo, I., Bouchon, B., Lema, J.M., Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ 1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry (2004) Analytical Biochemistry, 335, pp. 135-149 
504 |a López, C., Moreira, M.T., Feijoo, G., Lema, J.M., Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor (2004) Biotechnology Progress, 20, pp. 74-81 
504 |a Magario, I., Neumann, A., Oliveros, E., Syldatk, C., Deactivation kinetics and response surface analysis of the stability of α-l-rhamnosidase from Penicillium decumbens (2009) Applied Biochemistry and Biotechnology, 152, pp. 29-41 
504 |a Manzano, M.A., Riaza, A., Quiroga, J.M., Kiwi, J., Optimization of the solution parameters during the degradation of Orange II in a photo-reactor mediated by Fe-Nafion membranes (2009) Water Science and Technology, 60, pp. 833-840 
504 |a Montgomery, D.C., (2001) Design and Analysis of Experiments, , John Wiley and Sons, New York 
504 |a Murphy, T.E., Tsui, K.L., Allen, J.K., A review of robust design methods for multiple responses (2005) Research in Engineering Design, 16, pp. 118-132 
504 |a Murugesan, K., Dhamija, A., Nam, I.H., Kim, Y.M., Chang, Y.S., Decolourization of reactive black 5 by laccase: optimization by response surface methodology (2007) Dyes and Pigments, 75, pp. 176-184 
504 |a Mutambanengwe, C.C.Z., Togo, C.A., Whiteley, C.G., Decolorization and degradation of textile dyes with biosulfidogenic hydrogenases (2007) Biotechnology Progress, 23, pp. 1095-1100 
504 |a Nam, W., Han, H.J., New insights into the mechanisms of O-O bond cleavage of hydrogen peroxide and tert-alkyl hydroperoxides by iron(III) porphyrin complexes (2000) Journal of the American Chemical Society, 122, pp. 8677-8684 
504 |a Navalon, S., Alvaro, M., Garcia, H., Heterogeneous fenton catalysts based on clays, silicas and zeolites (2010) Applied Catalysis B: Environmental, 99, pp. 1-26 
504 |a Nicell, J.A., Saadi, K.W., Buchanan, I.D., Phenol polymerization and precipitation by horseradish peroxidase enzyme and an additive (1995) Bioresource Technology, 54, pp. 5-16 
504 |a Olya, M.E., Kasiri, M.B., Aleboyeh, H., Aleboyeh, A., Application of response surface methodology to optimise C.I. Acid Orange 7 azo dye mineralization by UV/H2O2 process (2008) Journal of Advanced Oxidation Technologies, 11, pp. 561-567 
504 |a Palmieri, G., Cennamo, G., Sannia, G., Remazol brilliant blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system (2005) Enzyme and Microbial Technology, 36, pp. 17-24 
504 |a Peralta-Hernández, J.M., Meas-Vong, Y., Rodríguez, F.J., Chapman, T.W., Maldonado, M.I., Godínez, L.A., Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution (2008) Dyes and Pigments, 76, pp. 656-662 
504 |a Pirillo, S., Einschlag, F.S.G., Ferreira, M.L., Rueda, E.H., Eriochrome Blue Black R and Fluorescein degradation by hydrogen peroxide oxidation with horseradish peroxidase and hematin as biocatalysts (2010) Journal of Molecular Catalysis B: Enzymatic, 66, pp. 63-71 
504 |a Rafiquzzaman, M., Komagoe, K., Tamagake, K., Comparative catalytic activity of hemin and hematin in the breakdown of methyllinoleate hydroperoxide and peroxidation of methyllinoleate in methanol (1995) Chemical and Pharmaceutical Bulletin, 43, pp. 905-909 
504 |a Ramirez, J.H., Costa, C.A., Madeira, L.M., Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent (2005) Catalysis Today, pp. 68-76 
504 |a Ramírez, J., Godínez, L.A., Méndez, M., Meas, Y., Rodríguez, F.J., Heterogeneous photo-electro-Fenton process using different iron supporting materials (2010) Journal of Applied Electrochemistry, 40, pp. 1729-1736 
504 |a Reeves, R.L., Maggio, M.S., Harkaway, S.A., A critical spectrophotometric analysis of the dimerization of some ionic azo dyes in aqueous solution (1979) Journal of the Physical Chemistry A, 83, pp. 2359-2368 
504 |a Reihmann, M., Ritter, H., Synthesis of phenol polymers using peroxidases (2006) Advances in Polymer Science, 194, pp. 1-49 
504 |a Robinson, T., McMullan, G., Marchant, R., Nigam, P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative (2001) Bioresource Technology, 77, pp. 247-255 
504 |a Rodríguez, A., Ovejero, G., Sotelo, J.L., Mestanza, M., García, J., Heterogeneous Fenton catalyst supports screening for mono azo dye degradation in contaminated wastewaters (2010) Industrial and Engineering Chemistry Research, 49, pp. 498-505 
504 |a Saidman, S., Rueda, E.H., Ferreira, M.L., Activity of free peroxidases, hematin, magnetite-supported peroxidases and magnetite-supported hematin in the aniline elimination from water-UV-vis analysis (2006) Biochemical Engineering Journal, 28, pp. 177-186 
504 |a Scheeren, C.W., Paniz, J.N.G., Martins, A.F., Comparison of advanced processes on the oxidation of Acid Orange 7 dye (2002) Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering, 37, pp. 1253-1261 
504 |a Simončič, B., Špan, J., Vesnaver, G., A study of the self-association of simple azo dyes using the potentiometric method (1994) Dyes and Pigments, 26, pp. 257-276 
504 |a Singh, A., Roy, S., Samuelson, L., Bruno, F., Nagarajan, R., Kumar, J., John, V., Kaplan, D.L., Peroxidase, hematin, and pegylated-hematin catalyzed vinyl polymerizations in water (2001) Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 38, pp. 1219-1230 
504 |a Stephenson, N.A., Bell, A.T., A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(III) tetrakispentafluorophenyl porphyrin (2005) Journal of the American Chemical Society, 127, pp. 8635-8643 
504 |a Stephenson, N.A., Bell, A.T., Mechanistic study of iron(III) tetrakis(pentafluorophenyl)porphyrin triflate (F20TPP)Fe(OTf) catalyzed cyclooctene epoxidation by hydrogen peroxide (2007) Inorganic Chemistry, 46, pp. 2278-2285 
504 |a Stuart, B.H., (2004) Infrared Spectroscopy: Fundamentals and Applications, , John Wiley and Sons, London 
504 |a Tantak, N.P., Chaudhari, S., Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment (2006) Journal of Hazardous Materials, 136, pp. 698-705 
504 |a Tian, S.H., Tu, Y.T., Chen, D.S., Chen, X., Xiong, Y., Degradation of Acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst (2011) Chemical Engineering Journal, 169, pp. 31-37 
504 |a Ulson de Souza, S.M.D.A.G., Bonilla, K.A.S., de Souza, A.A.U., Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment (2010) Journal of Hazardous Materials, 179, pp. 35-42 
504 |a Valle, P.W.P.A., Rezende, T.F., Souza, R.A., Fortes, I.C.P., Pasa, V.M.D., Combination of fractional factorial and doehlert experimental designs in biodiesel production: ethanolysis of Raphanus sativus l. var. oleiferus stokes oil catalyzed by sodium ethoxide (2009) Energy and Fuels, 23, pp. 5219-5227 
504 |a Van der Zee, F.P., Villaverdeb, S., Combined anaerobic-aerobic treatment of azo dyes - A short review of bioreactor studies (2005) Water Research, 39, pp. 1425-1440 
504 |a Wagner, M., Nicell, J.A., Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide (2002) Water Research, 36, pp. 4041-4052 
504 |a Yousefi, V., Kariminia, H.R., Statistical analysis for enzymatic decolorization of Acid Orange 7 by Coprinus cinereus peroxidase (2010) International Biodeterioration and Biodegradation, 64, pp. 245-252 
504 |a Zhang, H., Li, Y., Zhong, X., Ran, X., Application of experimental design methodology to the decolorization of Orange II using low iron concentration of photoelectro-Fenton process (2011) Water Science and Technology, 63, pp. 1373-1380 
504 |a Zhang, A., Fang, L., Wang, J., Liu, W., Enzymatic decolorization of Orange II: optimization by response surface methodology and pathway (2012) Environmental Progress & Sustainable Energy 
504 |a Zolgharnein, J., Adhami, Z., Shahmoradi, A., Mousavi, S.N., Optimization of removal of methylene blue by platanus tree leaves using response surface methodology (2010) Analytical Sciences, 26, pp. 111-116 
520 3 |a The catalytic performance of hematin was evaluated for the decolorization of solutions of the monoazoic textile dye Orange II in comparison to horseradish peroxidase (HRP) by means of response surface methodology. Conversions were affected mostly by the pH of the medium, followed by the catalyst and peroxide concentrations, whereas temperature impact was negligible. Both catalysts removed more than 92% of the color from 75 mg l-1 solutions after 60 min. Catalytic performance was optimal at alkaline pH and low peroxide-to-dye molar ratio (2.5 for HRP and 5 for hematin). Conversion results suggest a catalatic route for activity recovery and a lower sensitivity of hematin to peroxide and organic radical attack. Chemical oxygen demand values revealed lack of mineralization after treatment. UV/visible and FTIR spectra of treated solutions confirmed azo bond cleavage and the presence of oxygenated aliphatic hydrocarbon moieties as main products with both catalysts, whereas in the case of HRP coupling products are also produced after 24 h. These results are presented for the first time for hematin as biomimetic of peroxidase for dye degradation with a systematic study of variables using the Doehlert array. As a result, hematin emerges as an effective alternative to HRP for azo-dyes removal. © 2012 Elsevier Ltd.  |l eng 
593 |a Investigacion y Desarrollo en Tecnologia Quimica (IDTQ), Grupo Vinculado PLAPIQUI - CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, X5016GCA Ciudad Universitaria, Córdoba, Provincia de Córdoba, Argentina 
593 |a Planta Piloto de Ingeniería Química (PLAPIQUI), PLAPIQUI-UNS-CONICET, Universidad Nacional del Sur, Camino La Carrindanga Km 7, CC 717, 8000 Bahía Blanca, Provincia de Buenos Aires, Argentina 
690 1 0 |a AZO DYE 
690 1 0 |a DECOLORIZATION 
690 1 0 |a HEMATIN 
690 1 0 |a HORSERADISH PEROXIDASE 
690 1 0 |a RESPONSE SURFACE METHODOLOGY 
690 1 0 |a ACTIVITY RECOVERY 
690 1 0 |a AFTER-TREATMENT 
690 1 0 |a ALIPHATIC HYDROCARBONS 
690 1 0 |a ALKALINE PH 
690 1 0 |a AZO BOND CLEAVAGE 
690 1 0 |a CATALYTIC PERFORMANCE 
690 1 0 |a COUPLING PRODUCT 
690 1 0 |a DECOLORIZATION 
690 1 0 |a DOEHLERT 
690 1 0 |a DYE DEGRADATION 
690 1 0 |a FT-IR SPECTRUM 
690 1 0 |a HEMATIN 
690 1 0 |a HORSE-RADISH PEROXIDASE 
690 1 0 |a MOLAR RATIO 
690 1 0 |a ORANGE II 
690 1 0 |a ORGANIC RADICALS 
690 1 0 |a PEROXIDE CONCENTRATION 
690 1 0 |a RESPONSE SURFACE METHODOLOGY 
690 1 0 |a SYSTEMATIC STUDY 
690 1 0 |a TEMPERATURE IMPACT 
690 1 0 |a TEXTILE DYES 
690 1 0 |a ALKALINITY 
690 1 0 |a AZO DYES 
690 1 0 |a BIOMIMETICS 
690 1 0 |a CATALYSTS 
690 1 0 |a CHEMICAL OXYGEN DEMAND 
690 1 0 |a DEGRADATION 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a HYDROCARBONS 
690 1 0 |a OXIDATION 
690 1 0 |a PHOTODEGRADATION 
690 1 0 |a STRIPPING (DYES) 
690 1 0 |a SURFACE PROPERTIES 
690 1 0 |a TEXTILE FINISHING 
690 1 0 |a CATALYSIS 
690 1 0 |a CATALYST 
690 1 0 |a CHEMICAL OXYGEN DEMAND 
690 1 0 |a DEGRADATION 
690 1 0 |a DYE 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a HYDROCARBON 
690 1 0 |a MINERALIZATION 
690 1 0 |a POLLUTANT REMOVAL 
690 1 0 |a RADICAL 
690 1 0 |a ARMORACIA RUSTICANA 
650 1 7 |2 spines  |a PH 
700 1 |a Magario, I. 
700 1 |a Ferreira, M.L. 
773 0 |d 2012  |g v. 73  |h pp. 60-72  |p Int. Biodeterior. Biodegrad.  |x 09648305  |w (AR-BaUEN)CENRE-5193  |t International Biodeterioration and Biodegradation 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-84864378578&partnerID=40&md5=a26c7f383315fe9c9735a7d8ff399792  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ibiod.2012.05.020  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09648305_v73_n_p60_Cordoba  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09648305_v73_n_p60_Cordoba  |y Registro en la Biblioteca Digital 
961 |a paper_09648305_v73_n_p60_Cordoba  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70314