Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity

The development of milk functional foods including health-promoting green tea polyphenols represents a challenge for the food industry since the formation of protein-polyphenol complexes may affect both protein technological properties and polyphenols biological activity. The present work aimed at t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: von Staszewski, M.
Otros Autores: Jara, F.L, Ruiz, A.L.T.G, Jagus, R.J, Carvalho, J.E, Pilosof, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17084caa a22011897a 4500
001 PAPER-9305
003 AR-BaUEN
005 20230518203913.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84866179422 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a von Staszewski, M. 
245 1 0 |a Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity 
260 |c 2012 
270 1 0 |m von Staszewski, M.; CONICET, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina; email: marianvon@yahoo.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Baeza, R., Interacciones entre β-lactoglobulina y polisacáridos en coloides alimentarios (2003) Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, p. 253. , Universidad de Buenos Aires. PhD. Buenos Aires, Argentina 
504 |a Baeza, R.I., Pilosof, A.M.R., Calorimetric studies of thermal denaturation of β-lactoglobulin in the presence of polysaccharides (2002) Lebensmittel-Wissenschaft und-Technologie, 35, pp. 393-399 
504 |a Bromley, E.H.C., Krebs, M.R.H., Donald, A.M., Aggregation across the length-scales in β-lactoglobulin (2005) Faraday Discussions, 128, pp. 13-27 
504 |a Burton, J., Skudder, P.J., (1987), Whey proteins. UK patent application GB 2188526 A1; Clark, A.H., Kavanagh, G.M., Ross-Murphy, S.B., Globular protein gelation-theory and experiment (2001) Food Hydrocolloids, 15, pp. 383-400 
504 |a Clark, A.H., Ross-Murphy, S.B., Structural and mechanical properties of biopolymer gels (1987) Advances in Polymer Science, 83, pp. 57-192 
504 |a Class, S.D., Dalton, C.R., Hancock, B.C., Differential scanning calorimetry: Applications in drug development (1999) Pharmacology Science and Technology Today, 2 (8), pp. 311-319 
504 |a Chandra Mohan, K.V.P., Gunasekaran, P., Varalakshmi, E., Hara, Y., Nagini, S., In vitro evaluation of the anticancer effect of lactoferrin and tea polyphenol combination on oral carcinoma cells (2007) Cell Biology International, 31, pp. 599-608 
504 |a Charlton, A.J., Baxter, N.J., Lokman Khan, M., Moir, A.J.G., Haslam, E., Davies, A.P., Williamson, M.P., Polyphenol/peptide binding and precipitation (2002) Journal of Agricultural and Food Chemistry, 50, pp. 1593-1601 
504 |a Chen, C., Shen, G.X., Hebbar, V., Hu, R., Owuor, E.D., Kong, A.N.T., Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells (2003) Carcinogenesis, 24, pp. 1369-1378 
504 |a Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH dependent self-assembly and cold gelation (2010) International Dairy Journal, 20, pp. 79-88 
504 |a Frazier, R.A., Papadopoulou, A., Green, R.J., Isothermal titration calorimetry study of epicatechin binding to serum albumin (2006) Journal of Pharmaceutical and Biomedical Analysis, 41, pp. 1602-1605 
504 |a González de Mejía, E., Song, Y.S., Heck, C.I., Ramírez-Mares, M.V., Yerba mate tea (Ilex paraguariensis): Phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation (2010) Journal of Functional Foods, 2, pp. 23-34 
504 |a Harbourne, N., Jacquier, J.C., O'Riordan, D., Effects of addition of phenolic compounds on the acid gelation of milk (2011) International Dairy Journal, 21 (3), pp. 185-191 
504 |a Harnsilawat, T., Pongsawatmanit, R., McClements, D.J., Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study (2006) Food Hydrocolloids, 20, pp. 577-585 
504 |a Haug, I.J., Skar, H.M., Vegarud, G.E., Langsrud, T., Draget, K.I., Electrostatic effects on β-lactoglobulin transitions during heat denaturation as studied by differential scanning calorimetry (2009) Food Hydrocolloids, 23 (8), pp. 2287-2293 
504 |a Hoffmann, M.A.M., Roefs, S.P.F.M., Verheul, M., van Mil, P.J.J.M., de Kruif, K.G., Aggregation of β-lactoglobulin studied by in situ light scattering (1996) Journal of Dairy Research, 63, pp. 423-440 
504 |a Huh, S.W., Bae, S.M., Kim, Y.-W., Lee, J.M., Namkoong, S.E., Lee, I.P., Kim, S.H., Ahn, W.S., Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines (2004) Gynecologic Oncology, 94 (3), pp. 760-768 
504 |a Jöbstl, E., Ó Connell, J., Fairclough, P.A., Williamson, M.P., Astringency - A molecular model for polyphenol/protein binding (2004) Fibre Diffraction Review, 12, pp. 66-69 
504 |a Khan, N., Mukhtar, H., Multitargeted therapy of cancer by green tea polyphenols (2008) Cancer Letters, 269, pp. 269-280 
504 |a Kreuß, M., Strixner, T., Kulozik, U., The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide (2009) Food Hydrocolloids, 23 (7), pp. 1818-1826 
504 |a Kundu, T., Dey, S., Roy, M., Siddiqi, M., Bhattacharya, R.K., Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin (2005) Cancer Letters, 230, pp. 111-121 
504 |a Laemmli, U.K., Cleavage of structural proteins during the assembly of head of bacteriophague T4 (1970) Nature, 227, pp. 680-687 
504 |a Lambert, J.D., Lee, M.J., Diamond, L., Ju, J., Hong, J., Bose, M., Newmark, H.L., Yang, C.S., Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues (2006) Drug Metabolism and Disposition, 34, pp. 8-11 
504 |a Liang, L., Tajmir-Riahi, H.A., Subirade, M., Interaction of β-lactoglobulin with resveratrol and its biological implications (2008) Biomacromolecules, 9 (1), pp. 50-56 
504 |a Lin, H.-C., Chen, P.-C., Cheng, T.-J., Chen, R.L.C., Formation of tannin-albumin nano-particles at neutral pH as measured by light scattering techniques (2004) Analytical Biochemistry, 325, pp. 117-120 
504 |a Majhi, P.R., Ganta, R.R., Vanam, R.P., Seyrek, E., Giger, K., Dubin, P.L., Electrostatically driven protein aggregation: Beta-lactoglobulin at low ionic strength (2006) Langmuir, 22, pp. 9150-9159 
504 |a Martinez, M.J., Farías, M.E., Pilosof, A.M.R., The dynamics of heat gelation of casein glycomacropeptide - [beta]-lactoglobulin mixtures as affected by interactions in the aqueous phase (2010) International Dairy Journal, 20 (9), pp. 580-588 
504 |a Martinez, M.J., Farías, M.E., Pilosof, A.M.R., Casein glycomacropeptide pH-driven self-assembly and gelation upon heating (2011) Food Hydrocolloids, , Corrected Proof 
504 |a Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Boyd, M., Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines (1991) Journal of the National Cancer Institute, 83 (11), pp. 757-766 
504 |a Naczk, M., Oickle, D., Pink, D., Shahidi, F., Protein precipitating capacity of crude canola tannins: Effect of pH, tannin, and protein concentrations (1996) Journal of Agricultural and Food Chemistry, 44, pp. 2144-2148 
504 |a Nakano, T., Ozimek, L., Purification of glycomacropeptide from dialyzed and non-dializable sweet whey by anion-exchange chromatography at different pH values (2000) Biotechnology Letters, 22, pp. 1081-1086 
504 |a Oku, N., Matsukawa, M., Yamakawa, S., Asai, T., Yahara, S., Hashimoto, F., Akizawa, T., Inhibitory effect of green tea polyphenols on membrane-type 1 matrix metalloproteinase, MT1-MMP (2003) Biological & Pharmaceutical Bulletin, 26 (9), pp. 1235-1238 
504 |a Ould Eleya, M.M., Turgeon, S.L., The effects of pH on the rheology of β-lactoglobulin/κ-carrageenan mixed gels (2000) Food Hydrocolloids, 14, pp. 245-251 
504 |a Pilosof, A.M.R., Gelificación (2000) Caracterización funcional y estructural de proteínas, pp. 75-95. , Eudeba, Buenos Aires, Argentina, A.M.R. Pilosof, G.B. Bartholomai (Eds.) 
504 |a Poncet-Legrand, C., Edelmann, A., Putaux, J.L., Cartalade, D., Sarni-Manchado, P., Vernhet, A., Poly (L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio (2006) Food Hydrocolloids, 20, pp. 687-697 
504 |a Prigent, S.V.E., Gruppen, H., Visser, A.J.W.G., Van Koningsveld, G.A., De Jong, G.A.H., Voragen, A.G.J., Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins (2003) Journal of Agricultural and Food Chemistry, 51, pp. 5088-5095 
504 |a Relkin, P., Differential scanning calorimetry: a useful tool for studying protein denaturation (1994) Thermochimica Acta, 246, pp. 371-386 
504 |a Relkin, P., Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach (1996) Critical Reviews in Food Science and Nutrition, 36 (6), pp. 565-601 
504 |a Richard, T., Lefeuvre, D., Descendit, A., Quideau, S., Monti, J.P., Recognition characters in peptide-polyphenol complex formation (2006) Biochimica et Biophysica Acta, 1760, pp. 951-958 
504 |a Riihimäki, L.H., Vainio, M.J., Heikura, J.M.S., Valkonen, K.H., Virtanen, V.T., Vuorela, P.M., Binding of phenolic compounds and their derivatives to bovine and reindeer β-lactoglobulin (2008) Journal of Agricultural and Food Chemistry, 56 (17), pp. 7721-7729 
504 |a Ross, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53 
504 |a Shpigelman, A., Israeli, G., Livney, Y.D., Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG (2010) Food Hydrocolloids, 24, pp. 735-743 
504 |a Siebert, K.J., Troukhanova, N.V., Lynn, P.Y., Nature of polyphenol-protein interactions (1996) Journal of Agricultural and Food Chemistry, 44, pp. 80-85 
504 |a Silva-Hernández, E., Nakano, T., Ozimek, L., Isolation and analysis of κ-casein glycomacropeptide from goat sweet whey (2002) Journal Agricultural and Food Chemistry, 50, pp. 2034-2038 
504 |a Sittikijyothin, W., Sampaio, P., Gonçalves, M.P., Heat-induced gelation of β-lactoglobulin at varying pH: Effect of tara gum on the rheological and structural properties of the gels (2007) Food Hydrocolloids, 21, pp. 1046-1055 
504 |a Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Boyd, M., New colorimetric cytotoxicity assay for anticancer-drug screening (1990) Journal of the National Cancer Institute, 82 (13), pp. 1107-1112 
504 |a Stading, M., Hermansson, A.M., Viscoelastic behaviour of β-lactoglobulin structures (1990) Food Hydrocolloids, 4 (2), pp. 121-135 
504 |a Stading, M., Hermansson, A.M., Inhomogeneous fine-stranded β-lactoglobulin gels (1992) Food Hydrocolloids, 5, pp. 455-470 
504 |a Thomä-Worringer, C., Sørensen, J., López Fandiño, R., Health effects and technological features of caseinomacropeptide (2006) International Dairy Journal, 16, pp. 1324-1333 
504 |a Vergote, D., Cren-Olivé, C., Chopin, V., Toillon, R.-A., Rolando, C., Hondermarck, H., Le Bourhis, X., (-)-Epigallocatechin (EGC) of green tea induces apoptosis of human breast cancer cells but not of their normal counterparts (2002) Breast Cancer Research and Treatment, 76, pp. 195-201 
504 |a Verheul, M., Pedersen, J.S., Roefs, S.P.F.M., de Kruif, K.G., Association behavior of native β-lactoglobulin (1999) Bipolymers, 49, pp. 11-20 
504 |a von Staszewski, M., Jagus, R.J., Pilosof, A.M.R., Influence of green tea polyphenols on the colloidal stability and gelation of WPC (2011) Food Hydrocolloids, 25 (5), pp. 1077-1084 
504 |a von Staszewski, M., Pilosof, A.M.R., Jagus, R.J., Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins (2011) Food Chemistry, 125 (1), pp. 186-192 
504 |a Wang, T., Lucey, J.A., Use of multi-angle laser light scattering and size-exclusion chromatography to characterize the molecular weight and types of aggregates present in commercial whey proteins products (2003) Journal of Dairy Science, 86, pp. 3090-3110 
504 |a Wu, W., Clifford, M., Howell, N.K., The effect of instant green tea on the foaming and rheological properties of egg albumen proteins (2007) Journal of the Science of Food and Agriculture, 87, pp. 1810-1819 
504 |a Yang, C.S., Wang, X., Lu, G., Picinich, S.C., Cancer prevention by tea: animal studies, molecular mechanisms and human relevance (2009) Nature Reviews Cancer, 9 (6), pp. 429-439 
504 |a Yang, G.Y., Liao, J., Kim, K., Yurkow, E.J., Yang, C.S., Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols (1998) Carcinogenesis, 19, pp. 611-616 
504 |a Zhong, Y., Chiou, Y.-S., Pan, M.-H., Ho, C.-T., Shahidi, F., Protective effects of epigallocatechin gallate (EGCG) derivatives on azoxymethane-induced colonic carcinogenesis in mice (2012) Journal of Functional Foods, 4 (1), pp. 323-330 
504 |a Zhong, Y., Chiou, Y.-S., Pan, M.-H., Shahidi, F., Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages (2012) Food Chemistry, 134 (2), pp. 742-748 
504 |a Zhong, Y., Ma, C.-M., Shahidi, F., Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives (2012) Journal of Functional Foods, 4 (1), pp. 87-93 
504 |a Zhong, Y., Shahidi, F., Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems (2012) Food Chemistry, 131 (1), pp. 22-30 
520 3 |a The development of milk functional foods including health-promoting green tea polyphenols represents a challenge for the food industry since the formation of protein-polyphenol complexes may affect both protein technological properties and polyphenols biological activity. The present work aimed at the characterization of complexes formed between green tea polyphenols and either β-lactoglobulin (β-lg) or caseinomacropeptide (CMP), as well as to evaluate how this complexation may impact on protein gelation and polyphenol antiproliferative activity against tumor cell lines. Particle size and charge of protein-polyphenol complexes depend on protein nature and pH. At pH 6 they had the smallest size and were soluble. The presence of polyphenols accelerated the gelation of both β-lg and CMP, and mainly affected viscoelasticity of β-lg gels. Polyphenol complexation by proteins did not inhibit its anti-proliferative activity. Moreover, they exerted a better performance on some particular tumor cell lines. © 2012 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: This research was supported by Universidad de Buenos Aires, Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. 
593 |a CONICET, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina 
593 |a Pharmacology and Toxicology Division, CPQBA, University of Campinas - UNICAMP, P.O. Box 6171, 13083-970 Campinas, Brazil 
690 1 0 |a ANTITUMOR ACTIVITY 
690 1 0 |a GELATION 
690 1 0 |a GREEN TEA POLYPHENOLS 
690 1 0 |a INTERACTION 
690 1 0 |a WHEY PROTEINS 
700 1 |a Jara, F.L. 
700 1 |a Ruiz, A.L.T.G. 
700 1 |a Jagus, R.J. 
700 1 |a Carvalho, J.E. 
700 1 |a Pilosof, A.M.R. 
773 0 |d 2012  |g v. 4  |h pp. 800-809  |k n. 4  |p J. Funct. Foods  |x 17564646  |t Journal of Functional Foods 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866179422&doi=10.1016%2fj.jff.2012.05.008&partnerID=40&md5=f0c25f13ce797eada0f7d1beb319cd93  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jff.2012.05.008  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17564646_v4_n4_p800_vonStaszewski  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17564646_v4_n4_p800_vonStaszewski  |y Registro en la Biblioteca Digital 
961 |a paper_17564646_v4_n4_p800_vonStaszewski  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70258