Changes in Structure, Rheology, and Water Mobility of Apple Tissue Induced by Osmotic Dehydration with Glucose or Trehalose

The impact of osmotic dehydration to water activity (a w) at 0. 97 or 0. 94 with glucose or trehalose solutions on structure (optical and transmission electronic microscopy observations), rheological properties (small-scale dynamic oscillatory and creep/recovery measurements and large-scale compress...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vicente, S.
Otros Autores: Nieto, A.B, Hodara, K., Castro, M.A, Alzamora, S.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16028caa a22014777a 4500
001 PAPER-9234
003 AR-BaUEN
005 20230518203908.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84867679106 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Vicente, S. 
245 1 0 |a Changes in Structure, Rheology, and Water Mobility of Apple Tissue Induced by Osmotic Dehydration with Glucose or Trehalose 
260 |c 2012 
270 1 0 |m Alzamora, S. M.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: smalzamora@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Alvarez, M.D., Canet, W., Cuesta, F., Lamua, M., Viscoelastic characterization of solids foods from creep compliance data: application to potato tissues (1998) Zeitschrift für Lebensmittel-Untersuchung Und -Forschung A, 207, pp. 356-362 
504 |a Alvarez, M.D., Fernández, C., Canet, W., Oscillatory rheological properties of fresh and frozen/thawed mashed potatoes as modified by different cryoprotectants (2010) Food and Bioprocess Technology, 3, pp. 55-70 
504 |a Alzamora, S.M., Castro, M.A., Nieto, A.B., Vidales, S.L., Salvatori, D.M., The rol of tissue microstructure in the textural characteristics of minimally processed fruits (2000) Minimally Processed Fruits and Vegetables, pp. 153-171. , S. M. Alzamora, M. S. Tapia, A. López-Malo (Eds.), Maryland: Aspen Publishers Inc 
504 |a Alzamora, S.M., Cerrutti, P., Guerrero, S., López-Malo, A., Minimally processed fruits by combined methods (1995) Food Preservation by Moisture Control: Fundamentals and Applications, pp. 463-492. , G. V. Barbosa-Cánovas and J. Welti-Chanes (Eds.), Lancaster: Technomics Publishing Co 
504 |a Alzamora, S.M., Viollaz, P.E., Martínez, V.Y., Nieto, A.B., Salvatori, D.M., Exploring the linear viscoelastic properties structure relationship in processed fruit tissues (2008) Food Engineering: Integrated Approaches, pp. 133-214. , G. E. Gutiérrez-López, G. V. Barbosa-Cánovas, J. Welti-Chanes, and E. Parada-Arias (Eds.), New York: Springer 
504 |a Atarés, L., Chiralt, A., González-Martínez, C., Effect of solute on osmotic dehydration and rehydration of vacuum impregnated apple cylinders (cv. Granny Smith) (2008) Journal of Food Engineering, 89, pp. 49-56 
504 |a Calzada, J.F., Peleg, M., Mechanical interpretation of compressive stress-strain relationships of solid foods (1978) Journal of Food Science, 43, pp. 1087-1092 
504 |a Carpita, N.C., Gibeaut, D.M., Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth (1993) The Plant Journal, 3, pp. 1-30 
504 |a Ceroli, P., (2009) Efecto Del Soluto Durante La Dehidratación-impregnación Con Azúcares En Las Características Mecánicas De Tejido De Manzana Y De Melón a Altas Deformaciones, , M. Sc. thesis. Argentina: Universidad de Buenos Aires 
504 |a Chiralt, A., Martínez-Navarrete, N., Martínez-Monzó, J., Talens, P., Moraga, G., Ayala, A., Changes in mechanical properties throughout osmotic processes. Cryoprotectant effect (2001) Journal of Food Engineering, 49, pp. 129-135 
504 |a Choi, Y., Cho, K.W., Jeong, K., Jung, S., Molecular dynamics simulation of trehalose as a "dynamic reducer" for solvent water molecules in the hydration cells (2006) Carbohydrate Research, 341, pp. 1020-1028 
504 |a Colla, E., Belchol Pereira, A., Hernalsteens, S., Maugeri, F., Rodrigues, M.I., Optimization of trehalose production by Rhodotorula dairenensis following a sequential strategy of experimental design (2010) Food and Bioprocess Technology, 3, pp. 265-275 
504 |a Cornillon, P., Characterization of osmotic dehydrated apple by NMR and DSC (2000) Lebensmittel-Wissenschaft Und-Technologie, 33, pp. 261-267 
504 |a Crowe, L.M., Reid, D.S., Crowe, J.H., Is trehalose special for preserving dry biomaterials? (1996) Biophysical Journal, 71, pp. 2087-2093 
504 |a Dermesonlouoglou, E.K., Giannakourou, M.C., Taoukis, P., Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes (2007) Journal of Food Engineering, 78, pp. 272-280 
504 |a Ferrando, M., Spiess, W.E.J., Cellular response of plant tissue during the osmotic treatment with sucrose, maltose, and trehalose solutions (2001) Journal of Food Engineering, 49, pp. 115-127 
504 |a Finch, E.D., Schneider, A.S., Mobility of water bound to biological membranas-a proton NMR relaxation study (1975) Biochimica Et Biophysica Acta, 406, pp. 146-154 
504 |a Galmarini, M.V., Chirife, J., Zamora, M.C., Perez, A., Determination and correlation of the water activity of unsaturated, supersaturated and saturated trehalose solutions (2008) Lebensmittel Wissenschaft Und Technologie, 41, pp. 628-631 
504 |a Hills, B.P., Duce, S.L., The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues (1990) Magnetic Resonance Imaging, 8, pp. 321-331 
504 |a Hills, B.P., Remigereau, B., NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing (1997) International Journal of Food Science and Technology, 32, pp. 51-61 
504 |a Hills, B.P., Takacs, S.F., Belton, P.S., A new interpretation of proton NMR relaxation time measurements of water in food (1990) Food Chemistry, 37, pp. 95-111 
504 |a Jackman, R., Stanley, D., Perspectives in the textural evaluation of plant foods (1995) Trends in Food Science and Technology, 6, pp. 187-194 
504 |a Jackman, R.L., Stanley, D.W., Creep behaviour of tomato pericarp tissue as influenced by ambient temperature ripening and chilled storage (1995) Journal of Texture Studies, 26, pp. 537-552 
504 |a Khan, S.A., Roger, J.R., Raghavan, S.R., Rheology: Tools and methods (1997) The National Academy of Sciences, pp. 39-46. , (ed) Aviation fuels with improved fire safety, Proceedings. Washington DC, USA 
504 |a Kunzek, H., Kabbert, R., Gloyna, D., Aspects of material science in food processing: changes in plant cell walls of fruits and vegetables (1999) Zeitschrift für Lebensmittel-Untersuchung Und -Forschung A, 208, pp. 233-250 
504 |a Lillford, P.J., Mechanisms of fracture in foods (2001) Journal of Texture Studies, 32, pp. 397-417 
504 |a Luscher, C., Schlüter, O., Knorr, D., High pressure-low temperature processing of foods: impact on cell membranes, texture, color and visual appearance of potato tissue (2005) Innovative Food Science & Emerging Technologies, 6, pp. 59-71 
504 |a Martínez, V.Y., Nieto, A.B., Castro, M.A., Alzamora, S.M., Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration (2007) Journal of Food Engineering, 83, pp. 394-403 
504 |a Martínez, V.Y., Nieto, A.B., Viollaz, P.E., Alzamora, S.M., Viscoelatic behaviour of melon tissue as influenced by blanching and osmotic dehydration (2005) Journal of Food Science, 70 (1), pp. 12-18 
504 |a McGarigal, K., Cushman, S., Stafford, S., (2000) Multivariate Statistics for Wildlife and Ecology Research, , New York: Springer 
504 |a Micklander, E., Peshlov, B., Purslow, P.P., Engelsen, S.B., NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR (2002) Trends in Food Science & Technology, 13, pp. 341-346 
504 |a Mittal, J.P., Mohsenin, N.N., Rheological characterization of apple cortex (1987) Journal of Texture Studies, 18, pp. 65-93 
504 |a Nieto, A., Salvatori, D., Castro, M.A., Alzamora, S.M., Structural changes in apple tissue during glucose and sucrose osmotic dehydration. Shrinkage, porosity, density and microscopic features (2004) Journal of Food Engineering, 61 (2), pp. 269-278 
504 |a Norrish, R.S., An equation for the activity coefficient and relative humidities of water in confectionary syrup (1966) Journal of Food Technology, 1, pp. 25-28 
504 |a Patist, A., Zoerb, H., Preservation mechanisms of trehalose in food and biosystems (2005) Colloids and Surfaces. B, Biointerfaces, 40, pp. 107-113 
504 |a Peleg, M., A note on the various strain measurements at large compressive deformations (1984) Journal of Texture Studies, 15 (4), pp. 317-326 
504 |a Pitt, R., Viscoelastic properties of fruits and vegetables (1992) Viscoelastic Properties of Foods, pp. 49-76. , M. A. Rao and J. F. Steffe (Eds.), London: Elsevier 
504 |a Quinn, G.P., Keough, M.J., (2002) Experimental Design and Data Analysis for Biologists, , New York: Cambridge University Press 
504 |a Raffo, A., Gianferri, R., Barbieri, R., Brosio, E., Ripening of banana fruit monitored by wáter relaxation and diffusion 1H-NMR measurements (2005) Food Chemistry, 89, pp. 149-158 
504 |a Rebouillat, S., Peleg, M., Selected physical and mechanical properties of commercial apple cultivars (1988) Journal of Texture Studies, 19, pp. 217-230 
504 |a Resnik, S.L., Favetto, G., Chirife, J., Ferro Fontán, C., A world survey of water activityvalues of certain saturated solutions at 25 °C (1984) Journal of Food Science, 49, pp. 510-516 
504 |a Reynolds, E.S., The use of lead citrate at high pH as an electron opaque stain in electron microscopy (1963) The Journal of Cell Biology, 17, pp. 208-212 
504 |a Ruan, R.R., Chen, P.L., Nuclear magnetic resonance techniques (2001) Bread Staling, pp. 113-127. , P. Chinachoti and Y. Vodovotz (Eds.), Boca Raton: CRC Press 
504 |a Sherman, P., (1970) Industrial Rheology, , New York: Academic 
504 |a Snaar, J.E.M., van As, H., Probing water compartments and membrane permeability in plant cells by 1H-NMR relaxation measurements (1992) Biophysical Journal, 63, pp. 1654-1658 
504 |a Sorrivas, V., Morales, A., (1983) Introducción a La Microscopía Electrónica, , Centro Regional de Investigaciones Básicas y Aplicadas de Bahía Blanca & Banco del Sud, Bahía Blanca, Buenos Aires, Argentina 
504 |a Thybo, A.K., Karlsoon, A.H., Bertram, H.C., Andersen, H.J., Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in texture measurement (2004) Food Texture: Volume 2: Solid Foods, pp. 184-204. , D. Kilcast (Ed.), Cambridge: Woodhead Publishing 
504 |a Varanyanond, W., Boonbumrung, S., Tamura, H., Yoshizawa, T., Matsubara, Y., Osmotic dehydration of mango: influence of trehalose and sucrose contents on the product quality (2001) Technical Bulletin of Agriculture, Kagawa University, 53, pp. 43-49 
504 |a Varela, P., Salvador, A., Fiszman, S., Changes in apple tissue with storage time: rheological, textural and microstructural analyses (2007) Journal of Food Engineering, 78, pp. 622-629 
504 |a Waldron, K.W., Smith, A.C., Parr, A.J., Ng, A., Parker, M.L., New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture (1997) Trends in Food Science and Technology, 8, pp. 213-221 
504 |a Wu, J., Guo, K.G., Dynamic viscoelastic behavior and microstructural changes of Korla pear (Pyrus bretschneideri rehd) under varying turgor levels (2010) Biosystem Engineering, , doi: 10. 1016/j. biosystemseng. 2010. 05. 014 
520 3 |a The impact of osmotic dehydration to water activity (a w) at 0. 97 or 0. 94 with glucose or trehalose solutions on structure (optical and transmission electronic microscopy observations), rheological properties (small-scale dynamic oscillatory and creep/recovery measurements and large-scale compression force-deformation testing) and water mobility ( 1H-NMR spectra) of parenchymatous apple tissue was investigated. In general, the nature and the concentration of sugar employed significantly affected the material properties and the structure of apple tissue. A dramatic loss in rigidity (E d); an increase in deformation at rupture (ε R R), creep compliances (J 0, J 1, and J 2), and fluidity (1/η 0) and a decrease in storage (G′) and loss (G″) moduli, true rupture stress (σ R R), and proton transverse relaxation times (T 2i) were induced by osmotic treatments. ε R R, C 1, and T 2i parameters allowed to discriminate between the sugars used as osmotic agents while the different a w levels for each sugar resulted in changes in σ R R, W, and T 2i values. Loss of turgor due to plasmolysis or rupture of membranes and desorganization/degradation of walls allowed explaining, at least partially, the changes in material parameters. © 2011 Springer Science+Business Media, LLC.  |l eng 
536 |a Detalles de la financiación: Inter-American Development Bank, IDB 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET 
536 |a Detalles de la financiación: Acknowledgments The authors want to thank the financial support from Universidad de Buenos Aires, CONICET and ANPCyT of Argentina and from BID. They also thank Cargill Inc. Argentina for supplying the trehalose. 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a APPLE 
690 1 0 |a GLUCOSE 
690 1 0 |a RHEOLOGY 
690 1 0 |a STRUCTURE 
690 1 0 |a TREHALOSE 
690 1 0 |a WATER MOBILITY 
690 1 0 |a APPLE 
690 1 0 |a APPLE TISSUE 
690 1 0 |a CREEP COMPLIANCE 
690 1 0 |a ELECTRONIC MICROSCOPY 
690 1 0 |a MATERIAL PARAMETER 
690 1 0 |a MATERIAL PROPERTY 
690 1 0 |a OSMOTIC AGENTS 
690 1 0 |a OSMOTIC DEHYDRATION 
690 1 0 |a OSMOTIC TREATMENT 
690 1 0 |a PLASMOLYSIS 
690 1 0 |a PROTON TRANSVERSE RELAXATION 
690 1 0 |a RHEOLOGICAL PROPERTY 
690 1 0 |a RUPTURE STRESS 
690 1 0 |a SMALL-SCALE DYNAMICS 
690 1 0 |a TREHALOSE 
690 1 0 |a TREHALOSE SOLUTION 
690 1 0 |a WATER ACTIVITY 
690 1 0 |a WATER MOBILITY 
690 1 0 |a DEFORMATION 
690 1 0 |a DEHYDRATION 
690 1 0 |a ELASTICITY 
690 1 0 |a GLUCOSE 
690 1 0 |a LIGHT TRANSMISSION 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 
690 1 0 |a RHEOLOGY 
690 1 0 |a STRUCTURE (COMPOSITION) 
690 1 0 |a TISSUE 
690 1 0 |a FRUITS 
690 1 0 |a MALUS X DOMESTICA 
650 1 7 |2 spines  |a OSMOSIS 
650 1 7 |2 spines  |a OSMOSIS 
700 1 |a Nieto, A.B. 
700 1 |a Hodara, K. 
700 1 |a Castro, M.A. 
700 1 |a Alzamora, S.M. 
773 0 |d 2012  |g v. 5  |h pp. 3075-3089  |k n. 8  |p Food. Bioprocess Technol.  |x 19355130  |t Food and Bioprocess Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867679106&doi=10.1007%2fs11947-011-0643-2&partnerID=40&md5=6a28381638866a766815d62d1236db16  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11947-011-0643-2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19355130_v5_n8_p3075_Vicente  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v5_n8_p3075_Vicente  |y Registro en la Biblioteca Digital 
961 |a paper_19355130_v5_n8_p3075_Vicente  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70187