Interior penalty discontinuous Galerkin FEM for the p(x)-Laplacian

In this paper we construct an "interior penalty" discontinuous Galerkin method to approximate the minimizer of a variational problem related to the p(x)-Laplacian. The function p: Ω → [p1,p2] is log-Holder continuous and 1 < p1 ≤ p2 ≤ ∞. We prove that the minimizers of the discrete func...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Del Pezzo, L.M
Otros Autores: Lombardi, A.L, Martínez, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07263caa a22008177a 4500
001 PAPER-9190
003 AR-BaUEN
005 20230518203904.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84868355657 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SJNAA 
100 1 |a Del Pezzo, L.M. 
245 1 0 |a Interior penalty discontinuous Galerkin FEM for the p(x)-Laplacian 
260 |c 2012 
270 1 0 |m Del Pezzo, L.M.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; email: ldpezzo@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arnold, D.N., Brezzi, F., Cockburn, B., Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems (2002) SIAM J. Numer. Anal., 39, pp. 1749-1779 
504 |a Bassi, F., Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations (1997) J. Comput. Phys., 131, pp. 267-279 
504 |a Bollt, E.M., Chartrand, R., Esedoglu, S., Schultz, P., Vixie, K.R., Graduated adaptive image denoising: Local compromise between total variation and isotropic diffusion (2009) Adv. Comput. Math., 31, pp. 61-85 
504 |a Brenner, S.C., Poincaré-Friedrichs inequalities for piecewise H 1 functions (2003) SIAM J. Numer. Anal., 41, pp. 306-324 
504 |a Brezzi, F., Manzini, G., Marini, L.D., Pietra, P., Russo, A., Discontinuous Galerkin approximations for elliptic problems (2000) Numer. Methods Partial Differential Equations, 16, pp. 365-378 
504 |a Buffa, A., Ortner, C., Compact embeddings of broken Sobolev spaces and applications (2009) IMA J. Numer. Anal., 29, pp. 827-855 
504 |a Chambolle, A., Lions, P.L., Image recovery via total variation minimization and related problems (1997) Numer. Math., 76, pp. 167-188 
504 |a Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration (2006) SIAM J. Appl. Math., 66, pp. 1383-1406 
504 |a Ciarlet, P., The finite element method for elliptic problems (1978) Stud. Math. Appl, 68. , North-Holland, Amsterdam 
504 |a Diening, L., (2002) Theoretical and Numerical Results for Electrorheological Fluids, , Ph. D. thesis, University of Freiburg, Germany 
504 |a Diening, L., Maximal function on generalized Lebesgue spaces Lp (·) (2004) Math. Inequal. Appl., 7, pp. 245-253 
504 |a Diening, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp (·) and W κ, p (middot;) (2004) Math. Nachr., 268, pp. 31-43 
504 |a Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M., Lebesgue and sobolev spaces with variable exponents (2011) Lecture Notes in Math., p. 2017. , Springer-Verlag, New York 
504 |a Diening, L., Hästö, P., Nekvinda, A., Open problems in variable exponent Lebesgue and Sobolev spaces (2004) Proceedings, Function Spaces, Differential Operators and Nonlinear Analysis, , Milovy, Czech Republic 
504 |a Fan, X., Zhang, Q.H., Existence of solutions for p (x)-Laplacian Dirichlet problem (2003) Nonlinear Anal., 52, pp. 1843-1852 
504 |a Fan, X., Regularity of nonstandard Lagrangians f (x, ξ) (1996) Nonlinear Anal., 27, pp. 669-678 
504 |a Fan, X., Boundary trace embedding theorems for variable exponent Sobolev spaces (2008) J. Math. Anal. Appl., 339, pp. 1395-1412 
504 |a Fan, X., Zhao, D., On the spaces Lp (x) (Ω) and W m, p (x) (Ω) (2001) J. Math. Anal. Appl., 263, pp. 424-446 
504 |a Goldfarb, D., (1970) A Family of Variable Metric Updates Derived by Variational Means, 24, pp. 23-26 
504 |a Harjulehto, P., Hästö, P., A capacity approach to the Poincare inequality and Sobolev imbeddings in variable exponent Sobolev spaces (2004) Rev. Mat. Complut., 17, pp. 129-146 
504 |a Kováčik, O., Rákosník, J., On spaces L p (x) and W k, p (x) (1991) Czechoslovak Math. J., 41, pp. 592-618 
504 |a Rudin, L.I., Osher, S., Fatemi, E., Nonlinear total variation based noise removal algorithms (1992) Phys. D, 60, pp. 259-268 
504 |a R̊užička, M., Electrorheological fluids: Modeling and mathematical theory (2000) Lecture Notes in Math., 1748. , Springer-Verlag, Berlin 
504 |a Samko, S., Denseness of C∞ 0 (R n) in the generalized Sobolev spaces W M, P (X) (R N), in Direct and Inverse Problems of Mathematical Physics (Newark, DE, 1997) (2000) Int. Soc. Anal. Appl. Comput, 5, pp. 333-342. , Kluwer Academic, Dordrecht, Netherlands 
504 |a Shanno, D.F., Conditioning of quasi-Newt on methods for function minimization (1970) Math. Com-put., 24, pp. 647-656 
504 |a Zhikov, V.V., Averaging of functionals of the calculus of variations and elasticity theory (1986) Izv. Akad. Nauk SSSR Ser. Mat., 50, pp. 675-710. , 877 
520 3 |a In this paper we construct an "interior penalty" discontinuous Galerkin method to approximate the minimizer of a variational problem related to the p(x)-Laplacian. The function p: Ω → [p1,p2] is log-Holder continuous and 1 < p1 ≤ p2 ≤ ∞. We prove that the minimizers of the discrete functional converge to the solution. We also make some numerical experiments in dimension one to compare this method with the conforming Galerkin method, in the case where p1 is close to one. This example is motivated by its applications to image processing. © 2012 Society for Industrial and Applied Mathematics.  |l eng 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, B1613GSX Los Polvorines, Provincia de Buenos Aires, Argentina 
690 1 0 |a DISCONTINUOUS GALERKIN 
690 1 0 |a MINIMIZATION 
690 1 0 |a VARIABLE EXPONENT SPACES 
690 1 0 |a DISCONTINUOUS GALERKIN 
690 1 0 |a DISCONTINUOUS GALERKIN FEM 
690 1 0 |a DISCONTINUOUS GALERKIN METHODS 
690 1 0 |a NUMERICAL EXPERIMENTS 
690 1 0 |a P (X)-LAPLACIAN 
690 1 0 |a VARIABLE EXPONENTS 
690 1 0 |a VARIATIONAL PROBLEMS 
690 1 0 |a IMAGE PROCESSING 
690 1 0 |a LAPLACE TRANSFORMS 
690 1 0 |a NUMERICAL METHODS 
690 1 0 |a OPTIMIZATION 
690 1 0 |a GALERKIN METHODS 
700 1 |a Lombardi, A.L. 
700 1 |a Martínez, S. 
773 0 |d 2012  |g v. 50  |h pp. 2497-2521  |k n. 5  |p SIAM J Numer Anal  |x 00361429  |w (AR-BaUEN)CENRE-263  |t SIAM Journal on Numerical Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84868355657&doi=10.1137%2f110820324&partnerID=40&md5=80977b19a8464f7586e119c36e36be4e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1137/110820324  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00361429_v50_n5_p2497_DelPezzo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v50_n5_p2497_DelPezzo  |y Registro en la Biblioteca Digital 
961 |a paper_00361429_v50_n5_p2497_DelPezzo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70143