A wavelet-based descriptor for handwritten numeral classification

In this work we propose descriptors for handwritten digit recognition based on multiresolution features by using the CDF 9/7 Wavelet Transform and Principal Component Analysis, in order to improve the classification performance and obtain a strong reduction on the size of the digit representation. T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Seijas, L.M
Otros Autores: Segura, E.C
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08822caa a22008897a 4500
001 PAPER-9103
003 AR-BaUEN
005 20230518203858.0
008 190411s2012 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84874274467 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Seijas, L.M. 
245 1 2 |a A wavelet-based descriptor for handwritten numeral classification 
260 |c 2012 
270 1 0 |m Seijas, L.M.; Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: lseijas@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Nicholl, P., Amira, A., Bouchaffra, D., Perrott, R., A statistical multirresolution approach for face recognition using structural hidden markov models (2008) EURASIP Journal on Advances in Signal Processing, 2008, pp. 1-13 
504 |a Kaplan, L., Murenzi, R., Pose estimation of sar imagery using the two dimensional continuous wavelet transform (2003) Pattern Recognition Letters, 24, pp. 2269-2280 
504 |a Chen, C., Chen, C., Chen, C., A comparison of texture features based on svm and som (2006) 18th International Conference on Pattern Recognition. Hong Kong: ICPR 2006, pp. 630-633 
504 |a Wunsch, P., Laine, A., Wavelet descriptors for multiresolution recognition of handprinted characters (1995) Pattern Recognition, 28 (8), pp. 1237-1249 
504 |a Chen, G.Y., Bui, T.D., Krzyzak, A., Contour-based handwritten numeral recognition using multiwavelets and neural networks (2003) Pattern Recognition, 36 (7), pp. 1597-1604 
504 |a Romero, D., Ruedin, A., Seijas, L., Wavelet based feature extraction for handwritten numerals (2009) Image Analysis and Processing (ICIAP 2009), LNCS, 5716, pp. 374-383. , Springer 
504 |a Correia, S., De Carvalho, J., Optimizing the recognition rates of unconstrained handwritten numerals using biorthogonal spline wavelets (2000) Pattern Recognition, 2000. Proceedings. 15th International Conference On. Barcelona, Spain: ICPR 2000, pp. 251-254 
504 |a Seijas, L., Segura, E., Detection of ambiguous patterns using svms: Application to handwritten numeral recognition (2009) Computer Analysis of Images and Patterns (CAIP 2009) - Lecture Notes in Computer Science, LNCS, 5702, pp. 840-847 
504 |a Shukla, P., (2003) Complex Wavelet Transforms and Their Applications, , M.Phil. Thesis. Glasgow (United Kingdom): Dept.of Electronic and Electrical Engineering, University of Strathclyde 
504 |a Mallat, S., (1999) A Wavelet Tour of Signal Processing, , Academic Press 
504 |a Skodras, A., Christopoulos, C., Ebrahimi, T., JPEG2000: The upcoming still image compression standard (2001) Elsevier, Pattern Recognition Letters, 22, pp. 1337-1345 
504 |a Suen, C., Nadal, C., Legault, R., Mai, T., Lam, L., Computer recognition of unconstrained handwritten numerals (1992) Procs IEEE, 80 (7), pp. 1162-1180 
504 |a Cho, S.B., Ensemble of structure-adaptive selforganizing maps for high performance classification (2000) Information Sciences, 123, pp. 103-114 
504 |a Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradientbased learning applied to document recognition (1998) Proceedings of the IEEE, 86 (11), pp. 2278-2324 
504 |a Vapnik, V., (1995) The Nature of Statistical Learning Theory, , Springer Verlag, New York 
504 |a Liu, C., Fujisawa, H., Classification and learning methods for character recognition: Advances and remaining problems (2008) Machine Learning in Document Analysis and Recognition, pp. 139-161. , H. F. S. Marinai, Ed. Springer 
504 |a Oliveira, L., Sabourin, R., Support vector machines for handwritten numerical string recognition (2004) 9th IEEE International Workshop on Frontiers in Handwritten Recognition, pp. 39-44. , Washington DC: IEEE Computer Society 
504 |a Haykin, S., (1999) Neural Networks A Comprehensive Foundation, , Prentice Hall 
504 |a Liu, C., Nakashima, K., Sako, H., Fujisawa, H., Handwritten digit recognition: Benchmarking of state-of-the-art techniques (2003) Pattern Recognition, 36, pp. 2271-2285 
504 |a Gorgevik, D., Cakmakov, D., An efficient three-stage classifier for handwritten digit recognition (2004) 17th International Conference on Pattern Recognition, 4, pp. 507-510. , IEEE Computer Society 
504 |a Seijas, L., Segura, E., Detection of ambiguous patterns in a som based recognition system: Application to handwritten numeral classification (2007) 6th International Workshop on Self-Organizing Maps, , Germany: Bielefeld University 
504 |a Lee, S., Off-line recognition of totally unconstrained handwritten numerals using multilayer cluster neural network (1996) IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (6), pp. 648-652 
504 |a Kegl, B., Busa-Fekete, R., Boosting products of base classifiers (2009) Proceedings of the 26th International Conference on Machine Learning, , Montreal, Canada 
504 |a Lauer, F., Suen, C., Bloch, G., A trainable feature extractor for handwritten digit recognition (2007) Pattern Recognition, 40, pp. 1816-1824 
504 |a Suen, C., Kiu, K., Strathy, N., Sorting and recognizing cheques and financial documents (1999) Document Analysis Systems: Theory and Practice, S.W.Lee and Y.Nakano (Eds.), LNCS, 1655, pp. 173-187. , Springer 
504 |a Liu, C., Fujisawa, H., Classification and learning for character recognition: Comparison of methods and remaining problems (2005) International Workshop on Neural Networks and Learning in Document Analysis and Recognition, , Seoul 
504 |a Ciresan, D., Meier, U., Gambardella, L., Schmidhuber, J., Handwritten digit recognition with a committee of deep neural nets on gpus (2011) Technical Report No. IDSIA-03-11. IDSIA / USI-SUPSI, Dalle Molle Institute for Artificial Intelligence, , SwitzerlandA4 - Presidenza del Consiglio dei Ministri; Governo Italiano; Ministero dello Sviluppo Economico; IAPR; Rete Puglia 
520 3 |a In this work we propose descriptors for handwritten digit recognition based on multiresolution features by using the CDF 9/7 Wavelet Transform and Principal Component Analysis, in order to improve the classification performance and obtain a strong reduction on the size of the digit representation. This allows for a higher precision in the recognizers and, at the same time, lower training costs, especially for large datasets. Experiments were carried out with the CENPARMI and MNIST databases, widely used in the literature for this kind of problems, combining classifiers of the Support Vector Machine type. The recognition rates are good, comparable to those reported in previous works. © 2012 IEEE.  |l eng 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a DESCRIPTOR 
690 1 0 |a DIGIT RECOGNITION 
690 1 0 |a DIMENSION REDUCTION 
690 1 0 |a MULTIRESOLUTION FEATURES 
690 1 0 |a SUPPORT VECTOR MACHINES 
690 1 0 |a CLASSIFICATION PERFORMANCE 
690 1 0 |a COMBINING CLASSIFIERS 
690 1 0 |a DESCRIPTORS 
690 1 0 |a DIGIT RECOGNITION 
690 1 0 |a DIGIT REPRESENTATION 
690 1 0 |a DIMENSION REDUCTION 
690 1 0 |a HANDWRITTEN DIGIT RECOGNITION 
690 1 0 |a HANDWRITTEN NUMERAL 
690 1 0 |a LARGE DATASETS 
690 1 0 |a MNIST DATABASE 
690 1 0 |a MULTI-RESOLUTION FEATURE 
690 1 0 |a RECOGNITION RATES 
690 1 0 |a TRAINING COSTS 
690 1 0 |a CHARACTER RECOGNITION 
690 1 0 |a CLASSIFICATION (OF INFORMATION) 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a SUPPORT VECTOR MACHINES 
700 1 |a Segura, E.C. 
711 2 |c Bari  |d 18 September 2012 through 20 September 2012  |g Código de la conferencia: 95717 
773 0 |d 2012  |h pp. 653-658  |p Proc. Int. Workshop Front. Handwriting Recogn. IWFHR  |n Proceedings - International Workshop on Frontiers in Handwriting Recognition, IWFHR  |x 15505235  |z 9780769547749  |t 13th International Conference on Frontiers in Handwriting Recognition, ICFHR 2012 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874274467&doi=10.1109%2fICFHR.2012.174&partnerID=40&md5=418144c9606ec99d0c68b094fe7b7954  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/ICFHR.2012.174  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15505235_v_n_p653_Seijas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15505235_v_n_p653_Seijas  |y Registro en la Biblioteca Digital 
961 |a paper_15505235_v_n_p653_Seijas  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
999 |c 70056