Starch-vegetable fibre composites to protect food products

The influence of wheat bran content in biodegradable composites based on cassava starch and containing glycerol and potassium sorbate were studied. Films were produced by casting and three different fractions of wheat bran fibre were used: 1.5 mg, 13.5 mg and 27.1 mg/g of matrix. It was observed tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Famá, L.
Otros Autores: Gerschenson, L., Goyanes, Silvia Nair
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12206caa a22012257a 4500
001 PAPER-8981
003 AR-BaUEN
005 20250423104547.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-54449087831 
030 |a CAPOD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Famá, L. 
245 1 0 |a Starch-vegetable fibre composites to protect food products 
260 |c 2009 
270 1 0 |m Goyanes, S.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina; email: goyanes@df.uba.ar 
504 |a Alemdar, A., Sain, M., Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties (2008) Composites Science and Technology, 68, pp. 557-565 
504 |a Alves, V., Costa, N., Hilliou, L., Larotonda, F., Goncalves, M., Sereno, A., Design of biodegradable composite films for food packaging (2006) Desalination, 199 (1), pp. 331-333 
504 |a Anderson, N.E., Clydesdale, F.M., An analysis of the dietary fiber content of a standard wheat bran (1980) Journal of Food Science, 45, pp. 336-340 
504 |a AOAC (1990). Official methods of analysis. 13th ed. Washington, DC: Association of Official Analytical Chemists; ASTM D-1925 (1936). MacFarlane, Darby, S., David, K., Billmeyer & Fred, W. Method and instrument for selecting personal compatible colors. US Patent office, Pat. No. 5313267; ASTM E96-00 (2000). Standard test method for water vapor transmission of materials. Philadelphia: American Society for Testing and Materials; Avérous, L., Le Digabel, F., Properties of biocomposites based on lignocellulosic fillers (2006) Carbohydrate Polymers, 66, pp. 480-493 
504 |a Bertuzzi, M.A., Armada, M., Gottifredi, J.C., Physicochemical characterization of starch based films (2007) Journal of Food Engineering, 82, pp. 17-25 
504 |a Chang, P., Chea, P.B., Seow, C.C., Plasticizing-antiplasticizing effects of water on physical properties of cassava starch films in the glassy state (2000) Journal of Food Science, 65 (3), pp. 445-451 
504 |a Curvelo, A.A.S., Carvalho, A.J.F., Agnelli, J.a.M., Thermoplastic starch-cellulosic fibrecomposites: Preliminary results (2001) Carbohydrate Polymers, 45, pp. 183-188 
504 |a Danish Food Composition Databank (2007). http://www.foodcomp.dk. Accessed 01/01/2008; Famá, L., Flores, S., Gerschenson, L., Goyanes, S., Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures (2006) Carbohydrate Polymers, 66 (1), pp. 8-15 
504 |a FAO (2004). Food and Agriculture Organization. Proceedings of the validation forum on the global cassava development strategy (Vol. 6). Rome: International Fund for Agricultural Development; Flores, S.K., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physical properties of cassava-starch edible films: Influence of filmmaking and potassium sorbate (2007) Food Research International, 4 (2), pp. 257-265 
504 |a García, M., Martino, M., Zaritzky, N., Lipid addition to improve barrier properties of edible starch-based films and coatings (2000) Journal of Food Science, 65 (6), pp. 941-947 
504 |a Gennadios, A., Weller, C.L., Gooding, C.H., Measurement errors in water vapor permeability of highly permeable, hydrophilic edible (1994) Journal of Food Engineering, 21, pp. 395-409 
504 |a Goyanes, S.N., Konig, P.G., Marconi, J.D., Dynamic mechanical analysis of particulate-filled epoxy resin (2003) Journal Applied Polymer Science, 88, pp. 883-892 
504 |a Guan, J., Hanna, M.A., Functional properties of extruded foam composites of starch acetate and corn cob fibre (2004) Industrial Crops and Products, 19, pp. 255-269 
504 |a Guilbert, S., Gontard, N., Gorris, L.G.M., Prolongation of the shelf-life of perishable food products using biodegradable films and coatings (1996) Labensm.-Wiss. U.-Technology, 29, pp. 10-17 
504 |a Hermans, P.H., Weidinger, A., On the determination of the crystalline fraction of polyethylenes from X-ray diffraction (1961) Macromolecular Chemistry, pp. 24-36 
504 |a Idicula, M., Malhotra, S.K., Joseph, K., Thomas, S., Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites (2005) Composites Science and Technology, 65, pp. 1077-1087 
504 |a Janot, C., (1997) Quasicrystals a primer. Monographs on the physics and chemistry of materials, , Oxford Science Publications pp. 9 
504 |a Jiang, W., Qiao, W., Sun, K., Mechanical and thermal properties of thermoplastic acetylated starch/poly(ethylene-co-vinyl alcohol) blends (2006) Carbohydrate Polymers, 65 (2), pp. 139-143 
504 |a John, M.J., Thomas, S., Biofibres and biocomposites (2008) Carbohydrate Polymers, 71, pp. 343-364 
504 |a Kester, J.J., Fennema, O.R., Edible films and coatings. A review (1986) Food Technology, 40, pp. 47-59 
504 |a Lourdin, D., Valle, G.D., Colonna, P., Influence of amylose content on starch films and foams (1995) Carbohydrate Polymers, 27 (4), pp. 261-270 
504 |a Marcovich, N., Aranguren, M., Reboredo, M., Modified woodflour as thermoset fillers. Part I. Effect of the chemical modification and percentage of filler on the mechanical properties (2001) Polymer, 42, pp. 815-825 
504 |a Mathew, A.P., Dufresne, A., Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties (2002) Biomacromolecules, 3 (5), pp. 1101-1108 
504 |a Matthews, F.L., Rawlings, R.D., (1994) Composite materials: Engineering and science, , Chapmen & Hall (ldt.), London 
504 |a Mosiewicki, M.A. (2005). Materiales compuestos con refuerzos y matrices poliméricas de origen vegetal. Tesis de Doctorado en Ciencias de Materiales. Universidad Nacional de Mar del Plata. INTEMA. Argentina; Nielsen, L.E., (1962) Mechanical properties of polymers, , Van Nostrand Reinhold, New York 
504 |a (2000) Polymer - clay nanocomposites, , Pinnavaia T.J., and Beall G.W. (Eds), Wiley, J. & Sons (ltd.), England 
504 |a Nielsen, L.E., Landel, R.F., (1994) Mechanical properties of polymers and composites, , Ochiai S. (Ed), Marcel Dekker, New York 
504 |a Romero-Bastida, C.A., Bello-Pérez, L.A., García, M.A., Martino, M.N., Solorza-Feria, J., Zarintzky, N.E., Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches (2005) Carbohydrate Polymers, 60, pp. 235-244 
504 |a Sokal, R.R., Rohlf, J.B., (1969) The principles and practice of statistics in biological research, , W.H. Freeman and Company, San Francisco, California 
504 |a Talja, R.A., Helén, H., Roos, Y.H., Jouppila, K., Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films (2007) Carbohydrate Polymers, 67, pp. 288-295 
504 |a Tharanathan, R.N., Biodegradable films and composite coatings: Past, present and future (2003) Trends in Food Science and Technology, 14, pp. 71-78 
504 |a Vermeiren, L., Devlieghere, F., Van Beest, M., de Kruijf, N., Debevere, J., Developments in the active packaging of foods (1999) Trend of Food Science Technology, 10, pp. 77-86 
504 |a Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., Wypych, F., Starch films reinforced with mineral clay (2003) Carbohydrate Polymers, 52, pp. 101-110 
504 |a Wollerdorfer, M., Bader, H., Influence of natural fibres on the mechanical properties of biodegradable polymers (1998) Industrial Crops and Products, 8 (2), pp. 105-112 
504 |a Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., Hwang, T.-S., Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites (2006) Composite Structures, 72, pp. 429-437 
506 |2 openaire  |e Política editorial 
520 3 |a The influence of wheat bran content in biodegradable composites based on cassava starch and containing glycerol and potassium sorbate were studied. Films were produced by casting and three different fractions of wheat bran fibre were used: 1.5 mg, 13.5 mg and 27.1 mg/g of matrix. It was observed that the addition of wheat bran, which contains 40 g of water insoluble fibre per 100 g of bran, shifted the glycerol-rich phase glass transition temperature toward higher temperatures, broadening and diminishing in intensity the peak associated with this relaxation. This effect suggests that the presence of fibre led to an enhancement in the glycerol dispersion. At room temperature, an increase in fibre content did not affect density of the matrix but caused the increase of the storage modulus and the decrease of loss tangent, moisture content and water vapor permeability. Besides, the addition of fibres led to the increase of the yellow index. The improvement in water vapor barrier properties jointly with the enhancement of mechanical properties when fibre was present, lead to the idea that the composite developed can be used to protect food and extend its shelf life. © 2008 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We acknowledge the financial support from Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas de la República, Argentina and Agencia Nacional de Investigaciones Científicas y Tecnológicas de la República, Argentina. 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina 
690 1 0 |a COMPOSITES 
690 1 0 |a PHYSICOCHEMICAL CHARACTERIZATION 
690 1 0 |a STARCH-WHEAT BRAN 
690 1 0 |a BUILDING MATERIALS 
690 1 0 |a CARBON FIBER REINFORCED PLASTICS 
690 1 0 |a FOOD PRODUCTS 
690 1 0 |a GLASS TRANSITION 
690 1 0 |a GLYCEROL 
690 1 0 |a GRAIN (AGRICULTURAL PRODUCT) 
690 1 0 |a MAGNESIUM PRINTING PLATES 
690 1 0 |a MECHANICAL PROPERTIES 
690 1 0 |a PHASE TRANSITIONS 
690 1 0 |a POTASSIUM 
690 1 0 |a STARCH 
690 1 0 |a VAPORS 
690 1 0 |a WATER CONTENT 
690 1 0 |a WATER VAPOR 
690 1 0 |a BIODEGRADABLE COMPOSITES 
690 1 0 |a CASSAVA STARCHES 
690 1 0 |a COMPOSITES 
690 1 0 |a FIBRE CONTENTS 
690 1 0 |a GLASS TRANSITION TEMPERATURES 
690 1 0 |a HIGHER TEMPERATURES 
690 1 0 |a LOSS TANGENTS 
690 1 0 |a MOISTURE CONTENTS 
690 1 0 |a PHYSICOCHEMICAL CHARACTERIZATION 
690 1 0 |a POTASSIUM SORBATE 
690 1 0 |a RICH PHASES 
690 1 0 |a ROOM TEMPERATURES 
690 1 0 |a SHELF-LIFE 
690 1 0 |a STORAGE MODULUS 
690 1 0 |a WATER VAPOR BARRIERS 
690 1 0 |a WATER VAPOR PERMEABILITIES 
690 1 0 |a WHEAT BRANS 
690 1 0 |a FIBERS 
690 1 0 |a MANIHOT ESCULENTA 
690 1 0 |a TRITICUM AESTIVUM 
700 1 |a Gerschenson, L. 
700 1 |a Goyanes, Silvia Nair 
773 0 |d 2009  |g v. 75  |h pp. 230-235  |k n. 2  |p Carbohydr Polym  |x 01448617  |w (AR-BaUEN)CENRE-603  |t Carbohydrate Polymers 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-54449087831&doi=10.1016%2fj.carbpol.2008.06.018&partnerID=40&md5=3c701f06fa19b3758dcdc80af19d35d7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.carbpol.2008.06.018  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01448617_v75_n2_p230_Fama  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01448617_v75_n2_p230_Fama  |y Registro en la Biblioteca Digital 
961 |a paper_01448617_v75_n2_p230_Fama  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI