Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models

A classical view of the neuroendocrine-immune network assumes bidirectional interactions where pro-inflammatory cytokines influence hypothalamic-pituitary- adrenal (HPA) axis-derived hormones that subsequently affect cytokines in a permanently servo-controlled circle. Nevertheless, this picture has...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Silberstein, S.
Otros Autores: Vogl, A.M, Bonfiglio, J.J, Wurst, W., Holsboer, F., Arzt, E., Deussing, J.M, Refojo, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Inc. 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20134caa a22016937a 4500
001 PAPER-8970
003 AR-BaUEN
005 20230518203849.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-60349091742 
024 7 |2 cas  |a beta endorphin, 59887-17-1; corticotropin releasing factor, 9015-71-8, 178359-01-8, 79804-71-0, 86297-72-5, 86784-80-7; mitogen activated protein kinase, 142243-02-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ANYAA 
100 1 |a Silberstein, S. 
245 1 0 |a Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models 
260 |b Blackwell Publishing Inc.  |c 2009 
270 1 0 |m Arzt, E.; Laboratorio de Fisiología Y Biología Molecular, FCEN, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: earzt@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Smith, S.M., Vale, W.W., The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress (2006) Dialogues Clin. Neurosci., 8, pp. 383-395. , & 
504 |a De Kloet, E.R., Joels, M., Holsboer, F., Stress and the brain: From adaptation to disease (2005) Nat. Rev. Neurosci., 6, pp. 463-475. , & 
504 |a Hillhouse, E.W., Grammatopoulos, D.K., The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: Implications for physiology and pathophysiology (2006) Endocr. Rev., 27, pp. 260-286. , & 
504 |a Besedovsky, H.O., Del Rey, R.A., Immune-neuro-endocrine interactions: Facts and hypotheses (1996) Endocr. Rev., 17, pp. 64-102. , & 
504 |a Branda, C.S., Dymecki, S.M., Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice (2004) Dev. Cell, 6, pp. 7-28. , & 
504 |a Deussing, J.M., Wurst, W., Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour (2005) C.R. Biol., 328, pp. 199-212. , & 
504 |a Bale, T.L., Vale, W.W., CRF and CRF receptors: Role in stress responsivity and other behaviors (2004) Annu. Rev. Pharmacol. Toxicol., 44, pp. 525-557. , & 
504 |a Herman, J.P., Figueiredo, H., Mueller, N.K., Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness (2003) Front Neuroendocrinol., 24, pp. 151-180 
504 |a Korosi, A., Baram, T.Z., The central corticotropin releasing factor system during development and adulthood (2008) Eur. J. Pharmacol., 583, pp. 204-214. , & 
504 |a Smagin, G.N., Heinrichs, S.C., Dunn, A.J., The role of CRH in behavioral responses to stress (2001) Peptides, 22, pp. 713-724. , & 
504 |a Arborelius, L., Owens, M.J., Plotsky, P.M., The role of corticotropin-releasing factor in depression and anxiety disorders (1999) J. Endocrinol., 160, pp. 1-12 
504 |a Buzzetti, R., McLoughlin, L., Lavender, P.M., Expression of pro-opiomelanocortin gene and quantification of adrenocorticotropic hormone-like immunoreactivity in human normal peripheral mononuclear cells and lymphoid and myeloid malignancies (1989) J. Clin. Invest., 83, pp. 733-737 
504 |a Lyons, P.D., Blalock, J.E., Pro-opiomelanocortin gene expression and protein processing in rat mononuclear leukocytes (1997) J. Neuroimmunol., 78, pp. 47-56. , & 
504 |a Cabot, P.J., Carter, L., Gaiddon, C., Immune cell-derived beta-endorphin. Production, release, and control of inflammatory pain in rats (1997) J. Clin. Invest., 100, pp. 142-148 
504 |a Smith, E.M., Blalock, J.E., Human lymphocyte production of corticotropin and endorphin-like substances: Association with leukocyte interferon (1981) Proc. Natl. Acad. Sci. USA, 78, pp. 7530-7534. , & 
504 |a Kavelaars, A., Ballieux, R.E., Heijnen, C.J., The role of IL-1 in the corticotropin-releasing factor and arginine-vasopressin-induced secretion of immunoreactive beta-endorphin by human peripheral blood mononuclear cells (1989) J. Immunol., 142, pp. 2338-2342. , & 
504 |a Blalock, J.E., Beta-endorphin in immune cells (1998) Immunol. Today, 19, pp. 191-192 
504 |a Panerai, A.E., Sacerdote, P., Beta-endorphin in the immune system: A role at last? (1997) Immunol. Today, 18, pp. 317-319. , & 
504 |a Apte, R.N., Durum, S.K., Oppenheim, J.J., Opioids modulate interleukin-1 production and secretion by bone-marrow macrophages (1990) Immunol. Lett., 24, pp. 141-148. , & 
504 |a Hosoi, J., Ozawa, H., Granstein, R.D., Beta-Endorphin binding and regulation of cytokine expression in Langerhans cells (1999) Ann. N. Y. Acad. Sci., 885, pp. 405-413. , & 
504 |a Kovalovsky, D., Pereda, M.P., Stalla, G.K., Differential regulation of interleukin-1 receptor antagonist by proopiomelanocortin peptides adrenocorticotropic hormone and beta-endorphin (1999) Neuroimmunomodulation, 6, pp. 367-372 
504 |a Belkowski, S.M., Alicea, C., Eisenstein, T.K., Inhibition of interleukin-1 and tumor necrosis factor-alpha synthesis following treatment of macrophages with the kappa opioid agonist U50, 488H (1995) J. Pharmacol. Exp. Ther., 273, pp. 1491-1496 
504 |a Chao, C.C., Molitor, T.W., Close, K., Morphine inhibits the release of tumor necrosis factor in human peripheral blood mononuclear cell cultures (1993) Int. J. Immunopharmacol., 15, pp. 447-453 
504 |a Fontana, L., Fattorossi, A., D'Amelio, R., Modulation of human concanavalin A-induced lymphocyte proliferative response by physiological concentrations of beta-endorphin (1987) Immunopharmacology, 13, pp. 111-115 
504 |a Gilmore, W., Weiner, L.P., The opioid specificity of beta-endorphin enhancement of murine lymphocyte proliferation (1989) Immunopharmacology, 17, pp. 19-30. , & 
504 |a Van Den Bergh, P., Rozing, J., Nagelkerken, L., Two opposing modes of action of beta-endorphin on lymphocyte function (1991) Immunology, 72, pp. 537-543. , & 
504 |a Puppo, F., Corsini, G., Mangini, P., Influence of beta-endorphin on phytohemagglutinin-induced lymphocyte proliferation and on the expression of mononuclear cell surface antigens in vitro (1985) Immunopharmacology, 10, pp. 119-125 
504 |a Panerai, A.E., Manfredi, B., Granucci, F., The beta-endorphin inhibition of mitogen-induced splenocytes proliferation is mediated by central and peripheral paracrine/autocrine effects of the opioid (1995) J. Neuroimmunol., 58, pp. 71-76 
504 |a Rubinstein, M., Mogil, J.S., Japon, M., Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 3995-4000 
504 |a Refojo, D., Kovalovsky, D., Young, J.I., Increased splenocyte proliferative response and cytokine production in beta-endorphin-deficient mice (2002) J. Neuroimmunol., 131, pp. 126-134 
504 |a Swanson, L.W., Sawchenko, P.E., Rivier, J., Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study (1983) Neuroendocrinology, 36, pp. 165-186 
504 |a Grigoriadis, D.E., The corticotropin-releasing factor receptor: A novel target for the treatment of depression and anxiety-related disorders (2005) Expert. Opin. Ther. Targets, 9, pp. 651-684 
504 |a Holsboer, F., Ising, M., Central CRH system in depression and anxiety - Evidence from clinical studies with CRH1 receptor antagonists (2008) Eur. J. Pharmacol., 583, pp. 350-357. , & 
504 |a Todorovic, C., Jahn, O., Tezval, H., The role of CRF receptors in anxiety and depression: Implications of the novel CRF1 agonist cortagine (2005) Neurosci. Biobehav. Rev., 29, pp. 1323-1333 
504 |a Bittencourt, J.C., Sawchenko, P.E., Do centrally administered neuropeptides access cognate receptors?: An analysis in the central corticotropin-releasing factor system (2000) J. Neurosci., 20, pp. 1142-1156. , & 
504 |a Van Pett, K., Viau, V., Bittencourt, J.C., Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse (2000) J. Comp Neurol., 428, pp. 191-212 
504 |a Hauger, R.L., Risbrough, V., Brauns, O., Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: New molecular targets (2006) CNS Neurol. Disord. Drug Targets, 5, pp. 453-479 
504 |a Timpl, P., Spanagel, R., Sillaber, I., Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1 (1998) Nat. Genet., 19, pp. 162-166 
504 |a Smith, G.W., Aubry, J.M., Dellu, F., Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development (1998) Neuron, 20, pp. 1093-1102 
504 |a Arzt, E., Holsboer, F., CRF signaling: Molecular specificity for drug targeting in the CNS (2006) Trends Pharmacol. Sci., 27, pp. 531-538. , & 
504 |a Philips, A., Lesage, S., Gingras, R., Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells (1997) Mol. Cell Biol., 17, pp. 5946-5951 
504 |a Kovalovsky, D., Refojo, D., Liberman, A.C., Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: Involvement of calcium, protein kinase A, and MAPK pathways (2002) Mol. Endocrinol., 16, pp. 1638-1651 
504 |a Brar, B.K., Chen, A., Perrin, M.H., Specificity and regulation of extracellularly regulated kinase1/2 phosphorylation through corticotropin-releasing factor (CRF) receptors 1 and 2beta by the CRF/urocortin family of peptides (2004) Endocrinology, 145, pp. 1718-1729 
504 |a Grammatopoulos, D.K., Randeva, H.S., Levine, M.A., Urocortin, but not corticotropin-releasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: An effect mediated via R1alpha and R2beta CRH receptor subtypes and stimulation of Gq-proteins (2000) Mol. Endocrinol., 14, pp. 2076-2091 
504 |a Bayatti, N., Zschocke, J., Behl, C., Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons (2003) Endocrinology, 144, pp. 4051-4060. , & 
504 |a Elliott-Hunt, C.R., Kazlauskaite, J., Wilde, G.J., Potential signalling pathways underlying corticotrophin-releasing hormone-mediated neuroprotection from excitotoxicity in rat hippocampus (2002) J. Neurochem., 80, pp. 416-425 
504 |a Swinny, J.D., Metzger, F., Ijkema-Paassen, J., Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro (2004) Eur. J. Neurosci., 19, pp. 1749-1758 
504 |a Di Benedetto, B., Hitz, C., Holter, S.M., Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain (2007) J. Comp Neurol., 500, pp. 542-556 
504 |a Ailing, F., Fan, L., Li, S., Role of extracellular signal-regulated kinase signal transduction pathway in anxiety (2008) J. Psychiatr. Res., 43, pp. 55-63 
504 |a Meller, E., Shen, C., Nikolao, T.A., Region-specific effects of acute and repeated restraint stress on the phosphorylation of mitogen-activated protein kinases (2003) Brain Res., 979, pp. 57-64 
504 |a Einat, H., Yuan, P., Gould, T.D., The role of the extracellular signal-regulated kinase signaling pathway in mood modulation (2003) J. Neurosci., 23, pp. 7311-7316 
504 |a Duman, C.H., Schlesinger, L., Kodama, M., A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment (2007) Biol. Psychiatry, 61, pp. 661-670 
504 |a Tronson, N.C., Schrick, C., Fischer, A., Regulatory mechanisms of fear extinction and depression-like behavior (2008) Neuropsychopharmacology, 33, pp. 1570-1583 
504 |a Refojo, D., Echenique, C., Muller, M.B., Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 6183-6188 
504 |a Muller, M.B., Zimmermann, S., Sillaber, I., Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress (2003) Nat. Neurosci., 6, pp. 1100-1107 
504 |a Qi, X., Lin, W., Li, J., The depressive-like behaviors are correlated with decreased phosphorylation of mitogen-activated protein kinases in rat brain following chronic forced swim stress (2006) Behav. Brain Res., 175, pp. 233-240 
504 |a Dwivedi, Y., Rizavi, H.S., Roberts, R.C., Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects (2001) J. Neurochem., 77, pp. 916-928 
504 |a Di Benedetto, B., Kallnik, M., Weisenhorn, D.M., Activation of ERK/MAPK in the Lateral Amygdala of the Mouse is Required for Acquisition of a Fear-Potentiated Startle response (2008) Neuropsychopharmacology, , In press 
504 |a Fischer, A., Radulovic, M., Schrick, C., Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior (2007) Neurobiol. Learn. Mem., 87, pp. 149-158 
504 |a Berton, O., Nestler, E.J., New approaches to antidepressant drug discovery: Beyond monoamines (2006) Nat. Rev. Neurosci., 7, pp. 137-151. , & 
504 |a Nemeroff, C.B., Widerlov, E., Bissette, G., Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients (1984) Science, 226, pp. 1342-1344 
504 |a Holsboer, F., Von Bardeleben, U., Gerken, A., Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression (1984) N. Engl. J. Med., 311, p. 1127 
504 |a Raadsheer, F.C., Hoogendijk, W.J., Stam, F.C., Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients (1994) Neuroendocrinology, 60, pp. 436-444 
504 |a Nemeroff, C.B., Owens, M.J., Bissette, G., Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims (1988) Arch. Gen. Psychiatry, 45, pp. 577-579 
504 |a Dunn, A.J., Berridge, C.W., Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? (1990) Brain Res. Brain Res. Rev., 15, pp. 71-100. , & 
504 |a Tamminga, C.A., Nemeroff, C.B., Blakely, R.D., Developing novel treatments for mood disorders: Accelerating discovery (2002) Biol. Psychiatry, 52, pp. 589-609 
504 |a Stenzel-Poore, M.P., Cameron, V.A., Vaughan, J., Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice (1992) Endocrinology, 130, pp. 3378-3386 
504 |a Groenink, L., Pattij, T., De, J.R., 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety (2003) Eur. J. Pharmacol., 463, pp. 185-197 
504 |a Tronche, F., Kellendonk, C., Kretz, O., Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety (1999) Nat. Genet., 23, pp. 99-103 
504 |a Lu, A., Steiner, M.A., Whittle, N., Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior (2008) Mol. Psychiatry, 13, pp. 1028-1042 
504 |a Hasler, G., Drevets, W.C., Manji, H.K., Discovering endophenotypes for major depression (2004) Neuropsychopharmacology, 29, pp. 1765-1781 
504 |a Van Gaalen, M.M., Reul, J.H., Gesing, A., Mice overexpressing CRH show reduced responsiveness in plasma corticosterone after a5-HT1A receptor challenge (2002) Genes Brain Behav., 1, pp. 174-177 
504 |a Steckler, T., Holsboer, F., Corticotropin-releasing hormone receptor subtypes and emotion (1999) Biol. Psychiatry, 46, pp. 1480-1508. , & 
520 3 |a A classical view of the neuroendocrine-immune network assumes bidirectional interactions where pro-inflammatory cytokines influence hypothalamic-pituitary- adrenal (HPA) axis-derived hormones that subsequently affect cytokines in a permanently servo-controlled circle. Nevertheless, this picture has been continuously evolving over the last years as a result of the discovery of redundant expression and extended functions of many of the molecules implicated. Thus, cytokines are not only expressed in cells of the immune system but also in the central nervous system, and many hormones present at hypothalamic- pituitary level are also functionally expressed in the brain as well as in other peripheral organs, including immune cells. Because of this intermingled network of molecules redundantly expressed, the elucidation of the unique roles of HPA axis-related molecules at every level of complexity is one of the major challenges in the field. Genetic engineering in the mouse offers the most convincing method for dissecting in vivo the specific roles of distinct molecules acting in complex networks. Thus, various immunological, behavioral, and signal transduction studies performed with different HPA axis-related mutant mouse lines to delineate the roles of β-endorphin, the type 1 receptor of corticotropin-releasing hormone (CRHR1), and its ligand CRH will be discussed here. © 2009 New York Academy of Sciences.  |l eng 
593 |a Laboratorio de Fisiología Y Biología Molecular, Departamento de Fisiología Y Biología Molecular Y Celular, IFYBINE: Inst. de Fisiol., Biol. Molec. Y Neurociencias-Consejo Nac. de Invest. Cie. Y Tecnicas, Buenos Aires, Argentina 
593 |a Max-Planck Institute of Psychiatry, Munich, Germany 
593 |a Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany 
593 |a Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany 
593 |a Laboratorio de Fisiología Y Biología Molecular, FCEN, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a BEHAVIOR 
690 1 0 |a CRF 
690 1 0 |a CRH 
690 1 0 |a ERK 
690 1 0 |a FORCED SWIM TEST 
690 1 0 |a HPA AXIS 
690 1 0 |a MAPK 
690 1 0 |a MOUSE MODELS 
690 1 0 |a STRESS 
690 1 0 |a STRESS-COPING BEHAVIOR 
690 1 0 |a Β-ENDORPHIN 
690 1 0 |a BETA ENDORPHIN 
690 1 0 |a CORTICOTROPIN RELEASING FACTOR 
690 1 0 |a CORTICOTROPIN RELEASING FACTOR RECEPTOR 1 
690 1 0 |a CYTOKINE 
690 1 0 |a MITOGEN ACTIVATED PROTEIN KINASE 
690 1 0 |a CENTRAL NERVOUS SYSTEM 
690 1 0 |a CONFERENCE PAPER 
690 1 0 |a COPING BEHAVIOR 
690 1 0 |a CYTOKINE PRODUCTION 
690 1 0 |a GENE OVEREXPRESSION 
690 1 0 |a GENETIC ENGINEERING 
690 1 0 |a HUMAN 
690 1 0 |a HYPOTHALAMUS HYPOPHYSIS ADRENAL SYSTEM 
690 1 0 |a IMMUNE SYSTEM 
690 1 0 |a IMMUNOCOMPETENT CELL 
690 1 0 |a IMMUNOMODULATION 
690 1 0 |a NEUROENDOCRINE SYSTEM 
690 1 0 |a NONHUMAN 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a SIGNAL TRANSDUCTION 
700 1 |a Vogl, A.M. 
700 1 |a Bonfiglio, J.J. 
700 1 |a Wurst, W. 
700 1 |a Holsboer, F. 
700 1 |a Arzt, E. 
700 1 |a Deussing, J.M. 
700 1 |a Refojo, D. 
773 0 |d Blackwell Publishing Inc., 2009  |g v. 1153  |h pp. 120-130  |p Ann. New York Acad. Sci.  |x 00778923  |w (AR-BaUEN)CENRE-1541  |z 9781573317467  |t Annals of the New York Academy of Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-60349091742&doi=10.1111%2fj.1749-6632.2008.03967.x&partnerID=40&md5=7393b0acf4ea9c34a92e1d2926a13b90  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1749-6632.2008.03967.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00778923_v1153_n_p120_Silberstein  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1153_n_p120_Silberstein  |y Registro en la Biblioteca Digital 
961 |a paper_00778923_v1153_n_p120_Silberstein  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69923