Molecular basis for the ph dependent structural transition of nitrophorin 4

Allostery can be defined in a broad sense as a structural change in a protein. The theoretical framework for allostery includes several formulations. In the stereochemical view, the activation event causes a local conformational change that is propagated through residue-to-residue contacts to the re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Martí, M.A
Otros Autores: Estrin, D.A, Roitberg, A.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2009
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09219caa a22012857a 4500
001 PAPER-8928
003 AR-BaUEN
005 20230518203847.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-65349143130 
024 7 |2 cas  |a Hemeproteins; Salivary Proteins and Peptides; nitrophorin 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCBF 
100 1 |a Martí, M.A. 
245 1 0 |a Molecular basis for the ph dependent structural transition of nitrophorin 4 
260 |b American Chemical Society  |c 2009 
270 1 0 |m Martí, M. A.; Departamento De Química Inorgánica, Analítica, Y Química Física, Facultad de Ciencias Exactas Y Naturales, Inquimae-Conicet, Buenos Aires, Argentina; email: marcelo@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Formaneck, M.S., Ma, L., Cui, Q., (2006) Proteins, 63, p. 846 
504 |a Ma, L., Cui, Q., (2007) J. Am. Chem. Soc, 129, p. 10261 
504 |a Szabo, A., Karplus, M., (1972) J. Mol. Biol, 72, p. 163 
504 |a Monod, J., Wyman, J., Changeux, J.P., (1965) J. Mol. Biol, 12, p. 88 
504 |a Perutz, M.F., (1970) Nature, 228, p. 726 
504 |a Yu, E.W., Koshland, D.E., (2001) Proc. Nat. Acad. Sci. U.S.A, 98, p. 9517 
504 |a Kern, D., Zuiderweg, E.R., (2003) Curr. Opin. Struct. Biol, 13, p. 748 
504 |a Swain, J.F., Gierasch, L.M., (2006) Curr. Opin. Struct. Biol, 16, p. 102 
504 |a Xu, C., Tobi, D., Bahar, I., (2003) J. Mol. Biol, 333, p. 153 
504 |a Tama, F., Sanejouand, Y.H., (2001) Protein Eng, 14, p. 1 
504 |a Tousignant, A., Pelletier, J.N., (2004) Chem. Biol, 11, p. 1037 
504 |a Yang, L.-W., Bahar, I., (2005) Structure (London), 13, p. 893 
504 |a Frauenfelder, H., Fenimore, P.W., Young, R.D., (2007) IUBMB Life, 59, p. 506 
504 |a Bahar, I., Atilgan, A.R., Erman, B., (1997) Folding Des, 2, p. 173 
504 |a Yang, L.-W., Eyal, E., Chennubhotla, C., Jee, J., Gronenborn, A.M., Bahar, I., (2007) Structure, 15, p. 741 
504 |a Go, N., Noguti, T., Nishikawa, T., (1983) Proc. Natl. Acad. Sci. U.S.A, 80, p. 3696 
504 |a Levitt, M., Sander, C., Stern, P.S., (1985) J. Mol. Biol, 181, p. 423 
504 |a Amadei, A., (1993) Proteins: Struct., Funct., Genet, 17, p. 412 
504 |a Rueda, M.; Ferrer-Costa, C.; Meyer, T.; Pérez, A.; Camps, J.; Hospital, A.; GelpÍ, J. L.; Orozco, M. Proc. Nat. Acad. Sci. U.S.A. 2007, 104, 796; Montfort, W.R., Weichsel, A., Andersen, J.F., (2000) Biochim. Biophys. Acta, 1482, p. 110 
504 |a Ribeiro, J.M.C., Hazzard, J.M.H., Nussenzveig, R.H., Champagne, D.E., Walker, F.A., (1993) Science, 260, p. 539 
504 |a Champagne, D.E., Nussenzveig, R.H., Ribeiro, J.M.C., (1995) J. Biol. Chem, 270, p. 8691 
504 |a Andersen, J.F., Ding, X.D., Balfour, C., Shokhireva, T.K., Champagne, D.E., Walker, F.A., Montfort, W.R., (2000) Biochemistry, 39, p. 10118 
504 |a Andersen, J.F., Montfort, W.R., (2000) J. Biol. Chem, 275, p. 30496 
504 |a Andersen, J.F., Weichsel, A., Balfour, C.A., Champagne, D.E., Montfort, W.R., (1998) Structure, 6, p. 1315 
504 |a Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A., Montfort, W.R., (1998) Nat. Struct. Biol, 5, p. 304 
504 |a Andersen, J.F., Champagne, D.E., Weichsel, A., Ribeiro, J.M.C., Balfour, C.A., Dress, V., Montfort, W.R., (1997) Biochemistry, 36, p. 4423 
504 |a Ribeiro, J.M.C., Nussenzveig, R.H., (1993) FEBS Lett, 330, p. 165 
504 |a Flower, D.R., North, A.C.T., Sansom, C.E., (2000) Biochim. Biophys. Acta, 1482, p. 9 
504 |a Kondrashov, D.A., Roberts, S.A., Weichsel, A., Montfort, W.R., (2004) Biochemistry, 43, p. 13637 
504 |a Maes, E.M., Weichsel, A., Andersen, J.F., Shepley, D., Montfort, W.R., (2004) Biochemistry, 43, p. 6679 
504 |a Kondrashov, D.A., Montfort, W.R., (2007) J. Phys. Chem. B, 111, p. 9244 
504 |a Marti, M.A., Lebrero, M.C.G., Roitberg, A.E., Estrin, D.A., (2008) J. Am. Chem. Soc, 130, p. 1611 
504 |a Maes, E.M., Roberts, S.A., Weichsel, A., Montfort, W.R., (2005) Biochemistry, 44, p. 12690 
504 |a Menyhárd, D.K., Keserü, G.M., (2005) FEBS Lett, 579, p. 5392 
504 |a Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., (1984) J. Chem. Phys, 81, p. 3684 
504 |a Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput. Phys, 23, p. 327 
504 |a Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., (2006) Proteins: Struct., Funct., Genet, 65, p. 712 
504 |a Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., (2006) J. Inorg. Biochem, 100, p. 761 
504 |a Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., Gonzalez Lebrero, M.C., Estrin, D.A., (2006) Phys. Chem. Chem. Phys, 8, p. 5611 
504 |a Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham Iii, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comput. Phys. Commun, 91, p. 1 
520 3 |a Allostery can be defined in a broad sense as a structural change in a protein. The theoretical framework for allostery includes several formulations. In the stereochemical view, the activation event causes a local conformational change that is propagated through residue-to-residue contacts to the rest of the protein through well-defined structural pathways. The thermodynamic, or population shift model, instead implies that the activated conformation is already present with non-negligible population in the nonactivated conformational ensemble, and therefore the activation merely shifts the equilibrium. Nitrophorins (NPs) are heme proteins that store and transport NO in a pH dependent manner, due to a conformational change. Using MD simulations, we show that the NP structural transition occurs in two different conformational free energy landscapes, each one corresponding to a pH condition and characterized by specific residue-residue interactions that characterize them. We also show that when the protonation state of the equilibrium state is modified the conformation becomes unstable and proceeds very fast to an intermediate stable state that is different for each pH condition. Finally, we will discuss that allosteric transition in NP4 does not occur due to a change in the relative population of both end states, but due to a drastic change in the free energy landscape of its conformational ensemble. © 2009 American Chemical Society.  |l eng 
593 |a Departamento De Química Inorgánica, Analítica, Y Química Física, Facultad de Ciencias Exactas Y Naturales, Inquimae-Conicet, Buenos Aires, Argentina 
593 |a Departamento De Química Biológica, Facultad de Ciencias Exactas Y Naturales, UniVersidad De Buenos Aires, Ciudad UniVersitaria, Pab.2, C1428EHA, Buenos Aires, Argentina 
593 |a Quantum Theory and Project and Department of Chemistry, University of Florida, GainesVille, Florida 32611-8435, United States 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
690 1 0 |a PORPHYRINS 
690 1 0 |a ACTIVATED CONFORMATIONS 
690 1 0 |a ALLOSTERIC TRANSITIONS 
690 1 0 |a ALLOSTERY 
690 1 0 |a CONFORMATIONAL CHANGES 
690 1 0 |a CONFORMATIONAL ENSEMBLES 
690 1 0 |a CONFORMATIONAL FREE ENERGIES 
690 1 0 |a EQUILIBRIUM STATE 
690 1 0 |a FREE ENERGY LANDSCAPES 
690 1 0 |a HEME PROTEINS 
690 1 0 |a MD SIMULATIONS 
690 1 0 |a MOLECULAR BASIS 
690 1 0 |a NITROPHORIN-4 
690 1 0 |a PH CONDITIONS 
690 1 0 |a PH DEPENDENTS 
690 1 0 |a PROTONATION STATE 
690 1 0 |a STABLE STATE 
690 1 0 |a STRUCTURAL CHANGES 
690 1 0 |a STRUCTURAL TRANSITIONS 
690 1 0 |a THEORETICAL FRAMEWORKS 
690 1 0 |a FREE ENERGY 
690 1 0 |a HEMOPROTEIN 
690 1 0 |a NITROPHORIN 
690 1 0 |a SALIVA PROTEIN 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMICAL MODEL 
690 1 0 |a CHEMISTRY 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a HEMEPROTEINS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a MODELS, CHEMICAL 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a SALIVARY PROTEINS AND PEPTIDES 
700 1 |a Estrin, D.A. 
700 1 |a Roitberg, A.E. 
773 0 |d American Chemical Society, 2009  |g v. 113  |h pp. 2135-2142  |k n. 7  |p J Phys Chem B  |x 15206106  |w (AR-BaUEN)CENRE-5879  |t Journal of Physical Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-65349143130&doi=10.1021%2fjp808055e&partnerID=40&md5=96acfa02c9662a29621c38c9f01be043  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp808055e  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15206106_v113_n7_p2135_Marti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v113_n7_p2135_Marti  |y Registro en la Biblioteca Digital 
961 |a paper_15206106_v113_n7_p2135_Marti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69881