A mixed problem for the infinity Laplacian via Tug-of-War games
In this paper we prove that a function uC} overlineΩ is the continuous value of the Tug-of-War game described in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear) if and only if it is the unique viscosity solution to the infinity Laplacian with mixed boundary conditions equation presented. By usi...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 05454caa a22005417a 4500 | ||
|---|---|---|---|
| 001 | PAPER-8915 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203846.0 | ||
| 008 | 190411s2009 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-58149346190 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Charro, F. | |
| 245 | 1 | 2 | |a A mixed problem for the infinity Laplacian via Tug-of-War games |
| 260 | |c 2009 | ||
| 270 | 1 | 0 | |m Charro, F.; Departamento de Matemáticas, U. Autonoma de Madrid, Madrid 28049, Spain; email: fernando.charro@uam.es |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Ambrosio, L., Lecture Notes on Optimal Transport Problems, , CVGMT preprint server | ||
| 504 | |a Aronsson, G., Extensions of functions satisfying Lipschitz conditions (1967) Ark. Mat., 6, pp. 551-561 | ||
| 504 | |a Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bull. Am. Math. Soc., 41, pp. 439-505 | ||
| 504 | |a Barles, G., Fully nonlinear Neumann type conditions for second-order elliptic and parabolic equations (1993) J. Differ. Equ., 106, pp. 90-106 | ||
| 504 | |a Barles, G., Busca, J., Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order terms (2001) Comm. Partial Diff. Equ., 26, pp. 2323-2337 | ||
| 504 | |a Barron, E.N., Evans, L.C., Jensen, R., The infinity Laplacian, Aronsson's equation and their generalizations (2008) Trans. Am. Math. Soc., 360, pp. 77-101 | ||
| 504 | |a Bhattacharya, T., Di Benedetto, E., Manfredi, J., Limits as p → ∞ of Δ p u p = f and related extremal problems (1991) Rend. Sem. Mat. Univ. Politec., Torino, pp. 15-68 | ||
| 504 | |a Crandall, M.G., Gunnarsson, G., Wang, P., Uniqueness of ∞-harmonic functions and the eikonal equation (2007) Comm. Partial Diff. Equ., 32, pp. 1587-1615 | ||
| 504 | |a Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Am. Math. Soc., 27, pp. 1-67 | ||
| 504 | |a Evans, L.C., Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem (1999) Mem. Am. Math. Soc., 137, p. 653 | ||
| 504 | |a García-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem (2007) Nonlinear Anal. T.M.A., 66, pp. 349-366. , 2 | ||
| 504 | |a Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient (1993) Arch. Rational Mech. Anal., 123, pp. 51-74 | ||
| 504 | |a Juutinen, P., Principal eigenvalue of a badly degenerate operator and applications (2007) J. Differ. Equ., 236, pp. 532-550 | ||
| 504 | |a Juutinen, P., Lindqvist, P., Manfredi, J., (2001) The Infinity Laplacian: Examples and Observations, Papers on Analysis, pp. 207-217. , Rep. Univ. Jyväskylä Dep. Math. Stat., 83, Univ. Jyväskylä, Jyväskylä | ||
| 504 | |a Kohn, R.V., Serfaty, S., A deterministic-control-based approach to motion by curvature (2006) Commun. Pure Appl. Math., 59, pp. 344-407. , 3 | ||
| 504 | |a Sthocastic games and applications (2003) NATO Science Series, pp. 27-36. , Neymann, A., Sorin, S. (eds.) | ||
| 504 | |a Oberman, A.M., A convergent difference scheme for the infinity-Laplacian: Construction of absolutely minimizing Lipschitz extensions (2005) Math. Comput., 74, pp. 1217-1230 | ||
| 504 | |a Peres, Y., Sheffield, S., Tug-of-war with Noise: A Game Theoretic View of the P-Laplacian, , preprint | ||
| 504 | |a Peres, Y., Schramm, O., Sheffield, S., Wilson, D., Tug-of-war and the infinity Laplacian (2008) J. Am. Math. Soc., , To appear in | ||
| 520 | 3 | |a In this paper we prove that a function uC} overlineΩ is the continuous value of the Tug-of-War game described in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear) if and only if it is the unique viscosity solution to the infinity Laplacian with mixed boundary conditions equation presented. By using the results in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear), it follows that this viscous PDE problem has a unique solution, which is the unique absolutely minimizing Lipschitz extension to the whole Ω (in the sense of Aronsson (Ark. Mat. 6:551-561, 1967) and Y. Peres et al. (J. Am. Math. Soc., 2008, to appear)) of the Lipschitz boundary data F:ΓD R . © 2008 Springer-Verlag. |l eng | |
| 593 | |a Departamento de Matemáticas, U. Autonoma de Madrid, Madrid 28049, Spain | ||
| 593 | |a Departamento de Matemática, FCEyN, Ciudad Universitaria, Pab I, (1428) Buenos Aires, Argentina | ||
| 700 | 1 | |a García Azorero, J. | |
| 700 | 1 | |a Rossi, J.D. | |
| 773 | 0 | |d 2009 |g v. 34 |h pp. 307-320 |k n. 3 |p Calc. Var. Partial Differ. Equ. |x 09442669 |t Calculus of Variations and Partial Differential Equations | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149346190&doi=10.1007%2fs00526-008-0185-2&partnerID=40&md5=2713fba6dc54bc9e47fca9adedcbe66c |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00526-008-0185-2 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_09442669_v34_n3_p307_Charro |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v34_n3_p307_Charro |y Registro en la Biblioteca Digital |
| 961 | |a paper_09442669_v34_n3_p307_Charro |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 69868 | ||