Detecting and quantifying temporal correlations in stochastic resonance via information theory measures

We show that Information Theory quantifiers are suitable tools for detecting and for quantifying noise-induced temporal correlations in stochastic resonance phenomena. We use the Bandt & Pompe (BP) method [Phys. Rev. Lett. 88, 174102 (2002)] to define a probability distribution, P, that fully ch...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rosso, O.A
Otros Autores: Masoller, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09002caa a22011057a 4500
001 PAPER-8809
003 AR-BaUEN
005 20230518203839.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-67649479396 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Rosso, O.A. 
245 1 0 |a Detecting and quantifying temporal correlations in stochastic resonance via information theory measures 
260 |c 2009 
270 1 0 |m Rosso, O. A.; Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia 
506 |2 openaire  |e Política editorial 
504 |a Gammaitoni, L., Marchesoni, F., Menichella-Saetta, E., Santucci, S., (1989) Phys. Rev. Lett, 62, p. 349 
504 |a Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., (1998) Rev. Mod. Phys, 70, p. 223 
504 |a Benzi, R., Parisi, G., Sutera, A., Vulpiani, A., (1982) Tellus, 34, p. 10 
504 |a Benzi, R., Sutera, A., Vulpiani, A., (1981) J. Phys. A, 14, pp. L453 
504 |a Wiesenfeld, K., Moss, F., (1995) Nature, 373, p. 6509 
504 |a Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L., (2004) Phys. Rep, 392, p. 321 
504 |a McNamara, B., Wiesenfeld, K., Roy, R., (1988) Phys. Rev. Lett, 60, p. 2626 
504 |a Giacomelli, G., Marin, F., Rabbiosi, I., (1999) Phys. Rev. Lett, 82, p. 675 
504 |a Badzey, R.L., Mohanty, P., (2005) Nature, 437, p. 995 
504 |a Jung, P., Hanggi, P., (1991) Phys. Rev. A, 44, p. 8032 
504 |a Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F., (1993) Nature, 365, p. 6444 
504 |a Levin, J.E., Miller, J.P., (1996) Nature, 380, p. 6570 
504 |a Collins, J.J., Imhoff, T.T., Grigg, P., (1996) Nature, 383, p. 770 
504 |a Russell, D., Wilkens, L., Moss, F., (1999) Nature, 402, p. 291 
504 |a Choi, M.H., Fox, R.F., Jung, P., (1998) Phys. Rev. E, 57, p. 6335 
504 |a L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74, (1995) 1052 (1995); Heneghan, C., Chow, C.C., Collins, J.J., Imhoff, T.T., Lowen, S.B., Teich, M.C., (1996) Phys. Rev. E, 54, pp. R2228 
504 |a Bulsara, A.R., Zador, A., (1996) Phys. Rev. E, 54, pp. R2185 
504 |a Neiman, A., Shulgin, B., Anishchenko, V., Ebeling, E., Schimansky-Geier, L., Freund, J., (1996) Phys. Rev. Lett, 76, p. 4299 
504 |a Inchiosa, M.E., Robinson, J.W.C., Bulsara, A.R., (2000) Phys. Rev. Lett, 85, p. 3369 
504 |a Goychuk, I., Hänggi, P., (2000) Phys. Rev. E, 61, p. 4272 
504 |a Goychuk, I., (2001) Phys. Rev. E, 64, p. 021909 
504 |a I. Goychuk, P. Hänggi, Eur. Phys. J. B (2009), DOI: 10.1140/epjb/e2009-00049-y; López-Ruiz, R., Mancini, H.L., Calbet, X., (1995) Phys. Lett. A, 209, p. 321 
504 |a Martín, M.T., Plastino, A., Rosso, O.A., (2003) Phys. Lett. A, 311, p. 126 
504 |a Lamberti, P.W., Martín, M.T., Plastino, A., Rosso, O.A., (2004) Physica A, 334, p. 119 
504 |a For discussion of other simple alternatives of the disequilibrium Q and the corresponding advantages and disadvantages of each ones see [26; Witt, A., Neiman, A., Kurths, J., (1997) Phys. Rev. E, 55, p. 5050 
504 |a Rosso, O.A., Masoller, C., (2009) Phys. Rev. E, , in press 
504 |a Rosso, O.A., Larrondo, H., Martin, M.T., Plastino, A., Fuentes, M.A., (2007) Phys. Rev. Lett, 99, p. 154102 
504 |a Shannon, C.E., (1948) Bell System Technical Journal, 27, p. 379 
504 |a Grassberger, P., (1986) Int. J. Theo. Phys, 25, p. 907 
504 |a Grassberger, P., (1986) Physica A, 140, p. 319 
504 |a Crutchfield, J.P., Young, K., (1989) Phys. Rev. Lett, 63, p. 105 
504 |a Wackerbauer, R., Witt, A., Altmanspacher, H., Kurths, J., Scheingraber, H., (1994) Chaos Solitons & Fractals, 4, p. 133 
504 |a Feldman, D.P., Crutchfield, J.P., (1998) Phys. Lett. A, 238, p. 244 
504 |a Shiner, J.S., Davison, M., Landsberg, P.T., (1999) Phys. Rev. E, 59, p. 1459 
504 |a Kantz, H., Kurths, J., Meyer-Kress, G., (1998) Nonlinear Analysis of Physiological Data, , Springer, Berlin 
504 |a Cover, T.M., Thomas, J.A., (1991) Elements of Information Theory, , Wiley, New York 
504 |a Wootters, W.K., (1981) Phys. Rev. D, 23, p. 357 
504 |a Martín, M.T., Plastino, A., Rosso, O.A., (2006) Physica A, 369, p. 439 
504 |a Plastino, A.R., Plastino, A., (1996) Phys. Rev. E, 54, p. 4423 
504 |a Calbet, X., López-Ruiz, R., (2001) Phys. Rev. E, 63, p. 066116 
504 |a Rosso, O.A., Martín, M.T., Figliola, A., Keller, K., Plastino, A., (2006) Journal on Neuroscience Methods, 153, p. 163 
504 |a Kowalski, A.M., Martín, M.T., Plastino, A., Rosso, O.A., (2007) Physica D, 233, p. 21 
504 |a Zunino, L., Pérez, D.G., Martín, M.T., Plastino, A., Garavaglia, M., Rosso, O.A., (2007) Phys. Rev. E, 75, p. 031115 
504 |a Bandt, C., Pompe, B., (2002) Phys. Rev. Lett, 88, p. 174102 
504 |a Keller, K., Sinn, M., (2005) Physica A, 356, p. 114 
504 |a Larrondo, H.A., Martín, M.T., González, C.M., Plastino, A., Rosso, O.A., (2006) Phys. Lett. A, 352, p. 421 
520 3 |a We show that Information Theory quantifiers are suitable tools for detecting and for quantifying noise-induced temporal correlations in stochastic resonance phenomena. We use the Bandt & Pompe (BP) method [Phys. Rev. Lett. 88, 174102 (2002)] to define a probability distribution, P, that fully characterizes temporal correlations. The BP method is based on a comparison of neighboring values, and here is applied to the temporal sequence of residence-time intervals generated by the paradigmatic model of a Brownian particle in a sinusoidally modulated bistable potential. The probability distribution P generated via the BP method has associated a normalized Shannon entropy, H[P], and a statistical complexity measure, C[P], which is defined as proposed by Rosso et al. [Phys. Rev. Lett. 99, 154102 (2007)]. The statistical complexity quantifies not only randomness but also the presence of correlational structures, the two extreme circumstances of maximum knowledge ("perfect order") and maximum ignorance ("complete randomness") being regarded an "trivial", and in consequence, having complexity C = 0. We show that both, H and C, display resonant features as a function of the noise intensity, i.e., for an optimal level of noise the entropy displays a minimum and the complexity, a maximum. This resonant behavior indicates noise-enhanced temporal correlations in the sequence of residence-time intervals. The methodology proposed here has great potential for the precise detection of subtle signatures of noise-induced temporal correlations in real-world complex signals. © 2009 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.  |l eng 
593 |a Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia 
593 |a Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Ciudad Universitaria, Buenos Aires, Argentina 
593 |a Departament de Fisica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, Terrassa 08222, Barcelona, Spain 
690 1 0 |a BISTABLE POTENTIAL 
690 1 0 |a BROWNIAN PARTICLES 
690 1 0 |a COMPLEX SIGNAL 
690 1 0 |a NOISE INTENSITIES 
690 1 0 |a OPTIMAL LEVEL 
690 1 0 |a QUANTIFYING NOISE 
690 1 0 |a REAL-WORLD 
690 1 0 |a RESONANT BEHAVIOR 
690 1 0 |a SHANNON ENTROPY 
690 1 0 |a STATISTICAL COMPLEXITY 
690 1 0 |a STOCHASTIC RESONANCES 
690 1 0 |a TEMPORAL CORRELATIONS 
690 1 0 |a TEMPORAL SEQUENCES 
690 1 0 |a TIME INTERVAL 
690 1 0 |a CIRCUIT RESONANCE 
690 1 0 |a INFORMATION THEORY 
690 1 0 |a MAGNETIC RESONANCE 
690 1 0 |a PROBABILITY DENSITY FUNCTION 
690 1 0 |a RANDOM PROCESSES 
690 1 0 |a PROBABILITY DISTRIBUTIONS 
700 1 |a Masoller, C. 
773 0 |d 2009  |g v. 69  |h pp. 37-43  |k n. 1  |p Eur. Phys. J. B  |x 14346028  |w (AR-BaUEN)CENRE-4694  |t European Physical Journal B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-67649479396&doi=10.1140%2fepjb%2fe2009-00146-y&partnerID=40&md5=3b07cc9718988f03263cbc5ec54c81b8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1140/epjb/e2009-00146-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14346028_v69_n1_p37_Rosso  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346028_v69_n1_p37_Rosso  |y Registro en la Biblioteca Digital 
961 |a paper_14346028_v69_n1_p37_Rosso  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69762