Typical 2-Cys peroxiredoxins - Modulation by covalent transformations and noncovalent interactions

2-Cys peroxiredoxins are peroxidases devoid of prosthetic groups that mediate in the defence against oxidative stress and the peroxide activation of signaling pathways. This dual capacity relies on the high reactivity of the conserved peroxidatic and resolving cysteines, whose modification embraces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Aran, M.
Otros Autores: Ferrero, D.S, Pagano, E., Wolosiuk, R.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 28277caa a22021617a 4500
001 PAPER-8791
003 AR-BaUEN
005 20230607131853.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-64149090868 
024 7 |2 cas  |a cysteine, 4371-52-2, 52-89-1, 52-90-4; disulfide, 16734-12-6; peroxidase, 9003-99-0; peroxide, 14915-07-2; Cysteine, 52-90-4; Molecular Chaperones; Peroxidases, 1.11.1.-; Peroxiredoxins, 1.11.1.15; Sulfenic Acids 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Aran, M. 
245 1 0 |a Typical 2-Cys peroxiredoxins - Modulation by covalent transformations and noncovalent interactions 
260 |c 2009 
270 1 0 |m Wolosiuk, R. A.; Instituto Leloir, IIBBA-CONICET, Universidad de Buenos Aires, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina; email: rwolosiuk@leloir.org.ar 
506 |2 openaire  |e Política editorial 
504 |a Buchanan, B.B., Wolosiuk, R.A., Schurmann, P., Thioredoxin and enzyme regulation (1979) Trends Biochem Sci, 4, pp. 93-96 
504 |a Cooper, C.E., Patel, R.P., Brookes, P.S., Darley-Usmar, V.M., Nanotransducers in cellular redox signaling: Modification of thiols by reactive oxygen and nitrogen species (2002) Trends Biochem Sci, 27, pp. 489-492 
504 |a Allen, J.F., Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes (1993) J Theor Biol, 165, pp. 609-631 
504 |a Paget, M.S., Buttner, M.J., Thiol-based regulatory switches (2003) Annu Rev Genet, 37, pp. 91-121 
504 |a Neill, S., Desikan, R., Hancock, J., Hydrogen peroxide signalling (2002) Curr Opin Plant Biol, 5, pp. 388-395 
504 |a Zhou, Y., Wan, X.Y., Wang, H.L., Yan, Z.Y., Hou, Y.D., Jin, D.Y., Bacterial scavengase p20 is structurally and functionally related to peroxiredoxins (1997) Biochem Biophys Res Commun, 233, pp. 848-852 
504 |a Park, S.G., Cha, M.K., Jeong, W., Kim, I.H., Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae (2000) J Biol Chem, 275, pp. 5723-5732 
504 |a Zhou, Y., Kok, K.H., Chun, A.C., Wong, C.M., Wu, H.W., Lin, M.C., Fung, P.C., Jin, D.Y., Mouse peroxiredoxin v is a thioredoxin peroxidase that inhibits p53-induced apoptosis (2000) Biochem Biophys Res Commun, 268, pp. 921-927 
504 |a Seo, M.S., Kang, S.W., Kim, K., Baines, I.C., Lee, T.H., Rhee, S.G., Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate (2000) J Biol Chem, 275, pp. 20346-20354 
504 |a Dietz, K.J., Horling, F., Konig, J., Baier, M., The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation (2002) J Exp Bot, 53, pp. 1321-1329 
504 |a Trivelli, X., Krimm, I., Ebel, C., Verdoucq, L., Prouzet-Mauleon, V., Chartier, Y., Tsan, P., Lancelin, J.M., Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR (2003) Biochemistry, 42, pp. 14139-14149 
504 |a Knoops, B., Loumaye, E., Van Der Eecken, V., Evolution of the peroxiredoxins (2007) Subcell Biochem, 44, pp. 27-40 
504 |a Loumaye, E., Andersen, A.C., Clippe, A., Degand, H., Dubuisson, M., Zal, F., Morsomme, P., Knoops, B., Cloning and characterization of Arenicola marina peroxiredoxin 6, an annelid two-cysteine peroxiredoxin highly homologous to mammalian one-cysteine peroxiredoxins (2008) Free Radic Biol Med, 45, pp. 482-493 
504 |a Copley, S.D., Novak, W.R., Babbitt, P.C., Divergence of function in the thioredoxin fold suprafamily: Evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor (2004) Biochemistry, 43, pp. 13981-13995 
504 |a Flohe, L., Harris, J.R., Introduction. History of the peroxiredoxins and topical perspectives (2007) Subcell Biochem, 44, pp. 1-25 
504 |a Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T., Hakoshima, T., Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa-proliferation-associated gene product (1999) Proc Natl Acad Sci USA, 96, pp. 12333-12338 
504 |a Sarma, G.N., Nickel, C., Rahlfs, S., Fischer, M., Becker, K., Karplus, P.A., Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin (2005) J Mol Biol, 346, pp. 1021-1034 
504 |a Hall, A., Karplus, P.A., Poole, L.B., Typical 2-Cys peroxiredoxins - Structures, mechanisms and functions (2009) FEBS J, 276. , doi: 
504 |a Lee, W., Choi, K.S., Riddell, J., Ip, C., Ghosh, D., Park, J.H., Park, Y.M., Human peroxiredoxin 1 and 2 are not duplicate proteins: The unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2 (2007) J Biol Chem, 282, pp. 22011-22022 
504 |a Jang, H.H., Kim, S.Y., Park, S.K., Jeon, H.S., Lee, Y.M., Jung, J.H., Lee, S.Y., Lee, K.O., Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype i differentially regulate its peroxidase and molecular chaperone functions (2006) FEBS Lett, 580, pp. 351-355 
504 |a Konig, J., Lotte, K., Plessow, R., Brockhinke, A., Baier, M., Dietz, K.J., Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure (2003) J Biol Chem, 278, pp. 24409-24420 
504 |a Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., Poole, L.B., Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin (2005) Biochemistry, 44, pp. 10583-10592 
504 |a Matsumura, T., Okamoto, K., Iwahara, S., Hori, H., Takahashi, Y., Nishino, T., Abe, Y., Dimer-oligomer interconversion of wild-type and mutant rat 2-Cys peroxiredoxin: Disulfide formation at dimer-dimer interfaces is not essential for decamerization (2008) J Biol Chem, 283, pp. 284-293 
504 |a Barranco-Medina, S., Kakorin, S., Lazaro, J.J., Dietz, K.J., Thermodynamics of the dimer-decamer transition of reduced human and plant 2-cys peroxiredoxin (2008) Biochemistry, 47, pp. 7196-7204 
504 |a Cao, Z., Bhella, D., Lindsay, J.G., Reconstitution of the mitochondrial PrxIII antioxidant defence pathway: General properties and factors affecting PrxIII activity and oligomeric state (2007) J Mol Biol, 372, pp. 1022-1033 
504 |a Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Yun, J.W., Two enzymes in one; Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function (2004) Cell, 117, pp. 625-635 
504 |a Meissner, U., Schroder, E., Scheffler, D., Martin, A.G., Harris, J.R., Formation, TEM study and 3D reconstruction of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly (2007) Micron, 38, pp. 29-39 
504 |a Gourlay, L.J., Bhella, D., Kelly, S.M., Price, N.C., Lindsay, J.G., Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). A mitochondrial 2-Cys peroxiredoxin organized as a decameric toroid (2003) J Biol Chem, 278, pp. 32631-32637 
504 |a Cao, Z., Roszak, A.W., Gourlay, L.J., Lindsay, J.G., Isaacs, N.W., Bovine mitochondrial peroxiredoxin III forms a two-ring catenane (2005) Structure, 13, pp. 1661-1664 
504 |a Guimaraes, B.G., Souchon, H., Honore, N., Saint-Joanis, B., Brosch, R., Shepard, W., Cole, S.T., Alzari, P.M., Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress (2005) J Biol Chem, 280, pp. 25735-25742 
504 |a Kemp, M., Go, Y.M., Jones, D.P., Nonequilibrium thermodynamics of thiol-disulfide redox systems: A perspective on redox systems biology (2008) Free Radic Biol Med, 44, pp. 921-937 
504 |a Wood, Z.A., Schroder, E., Robin Harris, J., Poole, L.B., Structure, mechanism and regulation of peroxiredoxins (2003) Trends Biochem Sci, 28, pp. 32-40 
504 |a Wood, Z.A., Poole, L.B., Hantgan, R.R., Karplus, P.A., Dimers to doughnuts: Redox-sensitive oligomerization of 2-cysteine peroxiredoxins (2002) Biochemistry, 41, pp. 5493-5504 
504 |a Schroder, E., Littlechild, J.A., Lebedev, A.A., Errington, N., Vagin, A.A., Isupov, M.N., Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution (2000) Structure, 8, pp. 605-615 
504 |a Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., Benahmed, M., Lunardi, J., Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site (2002) J Biol Chem, 277, pp. 19396-19401 
504 |a Wagner, E., Luche, S., Penna, L., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E., Rabilloud, T., A method for detection of overoxidation of cysteines: Peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress (2002) Biochem J, 366, pp. 777-785 
504 |a Immenschuh, S., Baumgart-Vogt, E., Peroxiredoxins, oxidative stress, and cell proliferation (2005) Antioxid Redox Signal, 7, pp. 768-777 
504 |a Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., De Miranda, S.M., Baier, M., Finkemeier, I., The function of peroxiredoxins in plant organelle redox metabolism (2006) J Exp Bot, 57, pp. 1697-1709 
504 |a Konig, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schurmann, P., Dietz, K.J., The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux (2002) Proc Natl Acad Sci USA, 99, pp. 5738-5743 
504 |a Foyer, C.H., Noctor, G., Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses (2005) Plant Cell, 17, pp. 1866-1875 
504 |a Phalen, T.J., Weirather, K., Deming, P.B., Anathy, V., Howe, A.K., Van Der Vliet, A., Jonsson, T.J., Heintz, N.H., Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery (2006) J Cell Biol, 175, pp. 779-789 
504 |a Jr R., S.F., Knutson, S.T., Poole, L.B., Fetrow, J.S., Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid (2008) Protein Sci, 17, pp. 299-312 
504 |a Nakamura, T., Yamamoto, T., Abe, M., Matsumura, H., Hagihara, Y., Goto, T., Yamaguchi, T., Inoue, T., Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate (2008) Proc Natl Acad Sci USA, 105, pp. 6238-6242 
504 |a Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E., Augusto, O., Reactions of yeast thioredoxin peroxidases i and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics (2007) Free Radic Biol Med, 42, pp. 326-334 
504 |a Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., Winterbourn, C.C., The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents (2007) J Biol Chem, 282, pp. 11885-11892 
504 |a Parsonage, D., Karplus, P.A., Poole, L.B., Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin (2008) Proc Natl Acad Sci USA, 105, pp. 8209-8214 
504 |a Hughes, M.N., Chemistry of nitric oxide and related species (2008) Methods Enzymol, 436, pp. 3-19 
504 |a Bryk, R., Griffin, P., Nathan, C., Peroxynitrite reductase activity of bacterial peroxiredoxins (2000) Nature, 407, pp. 211-215 
504 |a Wong, C.M., Zhou, Y., Ng, R.W., Kung, H.F., Jin, D.Y., Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress (2002) J Biol Chem, 277, pp. 5385-5394 
504 |a Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R., Koppenol, W.H., Knoops, B., Human peroxiredoxin 5 is a peroxynitrite reductase (2004) FEBS Lett, 571, pp. 161-165 
504 |a Pattison, D.I., Davies, M.J., Reactions of myeloperoxidase-derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases (2006) Curr Med Chem, 13, pp. 3271-3290 
504 |a Claiborne, A., Mallett, T.C., Yeh, J.I., Luba, J., Parsonage, D., Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation (2001) Adv Protein Chem, 58, pp. 215-276 
504 |a Allison, W.S., Formation and reactions of sulfenic acids in proteins (1976) Acc Chem Res, 9, pp. 293-299 
504 |a Kiley, P.J., Storz, G., Exploiting thiol modifications (2004) PLoS Biol, 2, p. 400 
504 |a Chae, H.Z., Chung, S.J., Rhee, S.G., Thioredoxin-dependent peroxide reductase from yeast (1994) J Biol Chem, 269, pp. 27670-27678 
504 |a Jara, M., Vivancos, A.P., Calvo, I.A., Moldon, A., Sanso, M., Hidalgo, E., The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast (2007) Mol Biol Cell, 18, pp. 2288-2295 
504 |a Nogoceke, E., Gommel, D.U., Kiess, M., Kalisz, H.M., Flohe, L., A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata (1997) Biol Chem, 378, pp. 827-836 
504 |a Poole, L.B., Reynolds, C.M., Wood, Z.A., Karplus, P.A., Ellis, H.R., Li Calzi, M., AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase (2000) Eur J Biochem, 267, pp. 6126-6133 
504 |a Sayed, A.A., Williams, D.L., Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni (2004) J Biol Chem, 279, pp. 26159-26166 
504 |a Serrato, A.J., Perez-Ruiz, J.M., Spinola, M.C., Cejudo, F.J., A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana (2004) J Biol Chem, 279, pp. 43821-43827 
504 |a Moon, J.C., Jang, H.H., Chae, H.B., Lee, J.R., Lee, S.Y., Jung, Y.J., Shin, M.R., Yun, D.J., The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts (2006) Biochem Biophys Res Commun, 348, pp. 478-484 
504 |a Perez-Ruiz, J.M., Spinola, M.C., Kirchsteiger, K., Moreno, J., Sahrawy, M., Cejudo, F.J., Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage (2006) Plant Cell, 18, pp. 2356-2368 
504 |a Spinola, M.C., Perez-Ruiz, J.M., Pulido, P., Kirchsteiger, K., Guinea, M., Gonzalez, M., Cejudo, F.J., NTRC new ways of using NADPH in the chloroplast (2008) Physiol Plant, 133, pp. 516-524 
504 |a Stenbaek, A., Hansson, A., Wulff, R.P., Hansson, M., Dietz, K.J., Jensen, P.E., NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase (2008) FEBS Lett, 582, pp. 2773-2778 
504 |a Mora-Garcia, S., Stolowicz, F., Wolosiuk, R.A., Redox signal transduction in plant metabolism (2005) Control of Primary Metabolism in Plants, , In. Vol. 22. Plaxton, W. McManus, M. eds). Blackwell Publishing. Oxford 
504 |a Collin, V., Lamkemeyer, P., Miginiac-Maslow, M., Hirasawa, M., Knaff, D.B., Dietz, K.J., Issakidis-Bourguet, E., Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type (2004) Plant Physiol, 136, pp. 4088-4095 
504 |a Bernier-Villamor, L., Navarro, E., Sevilla, F., Lazaro, J.J., Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum (2004) J Exp Bot, 55, pp. 2191-2199 
504 |a Broin, M., Cuine, S., Eymery, F., Rey, P., The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage (2002) Plant Cell, 14, pp. 1417-1432 
504 |a Radyuk, S.N., Klichko, V.I., Spinola, B., Sohal, R.S., Orr, W.C., The peroxiredoxin gene family in Drosophila melanogaster (2001) Free Radic Biol Med, 31, pp. 1090-1100 
504 |a Bauer, H., Kanzok, S.M., Schirmer, R.H., Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster: Isolation and characterization of a second thioredoxin in D. melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2 (2002) J Biol Chem, 277, pp. 17457-17463 
504 |a Barik, S., Immunophilins: For the love of proteins (2006) Cell Mol Life Sci, 63, pp. 2889-2900 
504 |a Jaschke, A., Mi, H., Tropschug, M., Human T cell cyclophilin 18 binds to thiol-specific antioxidant protein Aop1 and stimulates its activity (1998) J Mol Biol, 277, pp. 763-769 
504 |a Lee, S.P., Hwang, Y.S., Kim, Y.J., Kwon, K.S., Kim, H.J., Kim, K., Chae, H.Z., Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity (2001) J Biol Chem, 276, pp. 29826-29832 
504 |a Laxa, M., Konig, J., Dietz, K.J., Kandlbinder, A., Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions (2007) Biochem J, 401, pp. 287-297 
504 |a Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H., Hisabori, T., Chloroplast cyclophilin is a target protein of thioredoxin. Thiol modulation of the peptidyl-prolyl cis-trans isomerase activity (2003) J Biol Chem, 278, pp. 31848-31852 
504 |a Saurin, A.T., Neubert, H., Brennan, J.P., Eaton, P., Widespread sulfenic acid formation in tissues in response to hydrogen peroxide (2004) Proc Natl Acad Sci USA, 101, pp. 17982-17987 
504 |a Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., Rhee, S.G., Inactivation of human peroxiredoxin i during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid (2002) J Biol Chem, 277, pp. 38029-38036 
504 |a Cordray, P., Doyle, K., Edes, K., Moos, P.J., Fitzpatrick, F.A., Oxidation of 2-Cys-peroxiredoxins by arachidonic acid peroxide metabolites of lipoxygenases and cyclooxygenase-2 (2007) J Biol Chem, 282, pp. 32623-32629 
504 |a Wood, Z.A., Poole, L.B., Karplus, P.A., Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling (2003) Science, 300, pp. 650-653 
504 |a Biteau, B., Labarre, J., Toledano, M.B., ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin (2003) Nature, 425, pp. 980-984 
504 |a Jeong, W., Park, S.J., Chang, T.S., Lee, D.Y., Rhee, S.G., Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin (2006) J Biol Chem, 281, pp. 14400-14407 
504 |a Roussel, X., Bechade, G., Kriznik, A., Van Dorsselaer, A., Sanglier-Cianferani, S., Branlant, G., Rahuel-Clermont, S., Evidence for the formation of a covalent thiosulfinate intermediate with peroxiredoxin in the catalytic mechanism of sulfiredoxin (2008) J Biol Chem, 283, pp. 22371-22382 
504 |a Jonsson, T.J., Johnson, L.C., Lowther, W.T., Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace (2008) Nature, 451, pp. 98-101 
504 |a Choi, M.H., Lee, I.K., Kim, G.W., Kim, B.U., Han, Y.H., Yu, D.Y., Park, H.S., Choi, C., Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II (2005) Nature, 435, pp. 347-353 
504 |a Bozonet, S.M., Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., Morgan, B.A., Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide (2005) J Biol Chem, 280, pp. 23319-23327 
504 |a Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., Hidalgo, E., A cysteine-sulfinic acid in peroxiredoxin regulates H2O 2-sensing by the antioxidant Pap1 pathway (2005) Proc Natl Acad Sci USA, 102, pp. 8875-8880 
504 |a Papadia, S., Soriano, F.X., Leveille, F., Martel, M.A., Dakin, K.A., Hansen, H.H., Kaindl, A., Stefovska, V., Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses (2008) Nat Neurosci, 11, pp. 476-487 
504 |a Jeffery, C.J., Moonlighting proteins (1999) Trends Biochem Sci, 24, pp. 8-11 
504 |a Jeffery, C.J., Molecular mechanisms for multitasking: Recent crystal structures of moonlighting proteins (2004) Curr Opin Struct Biol, 14, pp. 663-668 
504 |a Wen, S.T., Van Etten, R.A., The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity (1997) Genes Dev, 11, pp. 2456-2467 
504 |a Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Kim, C.W., Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H 2O2-induced cell death (2005) J Biol Chem, 280, pp. 28775-28784 
504 |a Chuang, M.H., Wu, M.S., Lo, W.L., Lin, J.T., Wong, C.H., Chiou, S.H., The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function (2006) Proc Natl Acad Sci USA, 103, pp. 2552-2557 
504 |a Trotter, E.W., Rand, J.D., Vickerstaff, J., Grant, C.M., The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant (2008) Biochem J, 412, pp. 73-80 
504 |a Caporaletti, D., D'Alessio, A.C., Rodriguez-Suarez, R.J., Senn, A.M., Duek, P.D., Wolosiuk, R.A., Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin (2007) Biochem Biophys Res Commun, 355, pp. 722-727 
504 |a Chang, T.S., Jeong, W., Choi, S.Y., Yu, S., Kang, S.W., Rhee, S.G., Regulation of peroxiredoxin i activity by Cdc2-mediated phosphorylation (2002) J Biol Chem, 277, pp. 25370-25376 
504 |a Qu, D., Rashidian, J., Mount, M.P., Aleyasin, H., Parsanejad, M., Lira, A., Haque, E., Daigle, M., Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease (2007) Neuron, 55, pp. 37-52 
504 |a Aran, M., Caporaletti, D., Senn, A.M., Tellez De Inon, M.T., Girotti, M.R., Llera, A.S., Wolosiuk, R.A., ATP-dependent modulation and autophosphorylation of rapeseed 2-Cys peroxiredoxin (2008) Febs J, 275, pp. 1450-1463 
504 |a Budde, H., Flohe, L., Hofmann, B., Nimtz, M., Verification of the interaction of a tryparedoxin peroxidase with tryparedoxin by ESI-MS-MS (2003) Biol Chem, 384, pp. 1305-1309 
504 |a Jonsson, T.J., Ellis, H.R., Poole, L.B., Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system (2007) Biochemistry, 46, pp. 5709-5721 
504 |a Hoshino, I., Matsubara, H., Hanari, N., Mori, M., Nishimori, T., Yoneyama, Y., Akutsu, Y., Seki, N., Histone deacetylase inhibitor FK228 activates tumor suppressor Prdx1 with apoptosis induction in esophageal cancer cells (2005) Clin Cancer Res, 11, pp. 7945-7952 
504 |a Parmigiani, R.B., Xu, W.S., Venta-Perez, G., Erdjument-Bromage, H., Yaneva, M., Tempst, P., Marks, P.A., HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation (2008) Proc Natl Acad Sci USA, 105, pp. 9633-9638 
504 |a Jaffe, E.K., Morpheeins - A new structural paradigm for allosteric regulation (2005) Trends Biochem Sci, 30, pp. 490-497 
504 |a Majeran, W., Cai, Y., Sun, Q., Van Wijk, K.J., Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics (2005) Plant Cell, 17, pp. 3111-3140 
504 |a Poole, L.B., Nelson, K.J., Discovering mechanisms of signaling-mediated cysteine oxidation (2008) Curr Opin Chem Biol, 12, pp. 18-24 
504 |a Hofmann, B., Hecht, H.J., Flohe, L., Peroxiredoxins (2002) Biol Chem, 383, pp. 347-364 
504 |a Cha, M.K., Kim, H.K., Kim, I.H., Thioredoxin-linked 'thiol peroxidase' from periplasmic space of Escherichia coli (1995) J Biol Chem, 270, pp. 28635-28641 
504 |a Jeong, W., Cha, M.K., Kim, I.H., Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)-alkyl hydroperoxide peroxidase C (AhpC) family (2000) J Biol Chem, 275, pp. 2924-2930 
520 3 |a 2-Cys peroxiredoxins are peroxidases devoid of prosthetic groups that mediate in the defence against oxidative stress and the peroxide activation of signaling pathways. This dual capacity relies on the high reactivity of the conserved peroxidatic and resolving cysteines, whose modification embraces not only the usual thiol-disulfide exchange but also higher oxidation states of the sulfur atom. These changes are part of a complex system wherein the cooperation with other post-translational modifications - phosphorylation, acetylation - may function as major regulatory mechanisms of the quaternary structure. More importantly, modern proteomic approaches have identified the oxyacids at cysteine residues as novel protein targets for unsuspected post-translational modifications, such as phosphorylation that yields the unusual sulfi(o)nic-phosphoryl anhydride. In this article, we review the biochemical attributes of 2-Cys peroxiredoxins that, in combination with complementary studies of forward and reverse genetics, have generated stimulating molecular models to explain how this enzyme integrates into cell signaling in vivo. © 2009 FEBS.  |l eng 
593 |a Instituto Leloir, IIBBA-CONICET, Universidad de Buenos Aires, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina 
593 |a Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Catedra de Bioquimica, Facultad de Agronomia, Universidad de Buenos Aires, Argentina 
690 1 0 |a 2-CYS PEROXIREDOXIN 
690 1 0 |a ATP BINDING 
690 1 0 |a AUTOPHOSPHORYLATION 
690 1 0 |a MOLECULAR CHAPERONE 
690 1 0 |a OLIGOMERIZATION 
690 1 0 |a OVEROXIDATION 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PEROXIDASE MECHANISM 
690 1 0 |a SULFENIC ACID 
690 1 0 |a SULFINIC-PHOSPHORYL ANHYDRIDE 
690 1 0 |a CYSTEINE 
690 1 0 |a DISULFIDE 
690 1 0 |a PEROXIDASE 
690 1 0 |a PEROXIDE 
690 1 0 |a PEROXIREDOXIN 
690 1 0 |a THIOL 
690 1 0 |a ACETYLATION 
690 1 0 |a COVALENT BOND 
690 1 0 |a MOLECULAR INTERACTION 
690 1 0 |a MOLECULAR MODEL 
690 1 0 |a NONHUMAN 
690 1 0 |a OLIGOMERIZATION 
690 1 0 |a OXIDATION 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN PHOSPHORYLATION 
690 1 0 |a PROTEIN PROCESSING 
690 1 0 |a PROTEIN QUATERNARY STRUCTURE 
690 1 0 |a PROTEIN TARGETING 
690 1 0 |a PROTEOMICS 
690 1 0 |a REGULATORY MECHANISM 
690 1 0 |a REVIEW 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ANIMALS 
690 1 0 |a CYSTEINE 
690 1 0 |a HUMANS 
690 1 0 |a MOLECULAR CHAPERONES 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PEROXIDASES 
690 1 0 |a PEROXIREDOXINS 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PROTEIN PROCESSING, POST-TRANSLATIONAL 
690 1 0 |a SULFENIC ACIDS 
700 1 |a Ferrero, D.S. 
700 1 |a Pagano, E. 
700 1 |a Wolosiuk, R.A. 
773 0 |d 2009  |g v. 276  |h pp. 2478-2493  |k n. 9  |p FEBS J.  |x 1742464X  |w (AR-BaUEN)CENRE-7262  |t FEBS Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-64149090868&doi=10.1111%2fj.1742-4658.2009.06984.x&partnerID=40&md5=fc0aaa15086dc643434c875539677010  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1742-4658.2009.06984.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1742464X_v276_n9_p2478_Aran  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1742464X_v276_n9_p2478_Aran  |y Registro en la Biblioteca Digital 
961 |a paper_1742464X_v276_n9_p2478_Aran  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69744