Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae)

In crustaceans, sustaining (SN) and dimming (DN) neurons are readily identified by their distinct responses to a light pulse. However, morphological identification and electrophysiological characterization of these neurons has been achieved only in the crayfish. This study provides a description of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: de Astrada, M.B
Otros Autores: Tuthill, J.C, Tomsic, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11942caa a22011417a 4500
001 PAPER-8772
003 AR-BaUEN
005 20230518203836.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-69449091622 
024 7 |2 cas  |a biotin, 58-85-5; Biotin, 58-85-5; neurobiotin 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCPAD 
100 1 |a de Astrada, M.B. 
245 1 0 |a Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae) 
260 |c 2009 
270 1 0 |m Tomsic, D.; Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellón 2 Ciudad Universitaria (1428), Buenos Aires, Argentina; email: tomsic@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a de Astrada, B.M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J Comp Physiol A, 188, pp. 539-551 
504 |a de Astrada, B.M., Sztarker, J., Tomsic, D., Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo (2001) J Comp Physiol A, 187, pp. 37-44 
504 |a Dana, J.D., On the classification of the Maiod crustacea or oxyrhyncha (1851) Am J Sci Arts, 11, pp. 425-434 
504 |a Glantz, R.M., Polarization sensitivity in crayfish lamina monopolar neurons (1996) J Comp Physiol A, 178, pp. 413-425 
504 |a Glantz, R.M., Polarization sensitivity in the crayfish optic lobe: Peripheral contributions to opponency and directionally selective motion detection (1996) J Neurophysiol, 76, pp. 3404-3414 
504 |a Glantz, R.M., Polarization analysis in the crayfish visual system (2001) J Exp Biol, 204, pp. 2383-2390 
504 |a Glantz, R.M., The distribution of polarization sensitivity in the crayfish retinula (2007) J Comp Physiol A, 193 (8), pp. 893-901 
504 |a Glantz, R.M., McIsaac, A., Two-channel polarization analyzer in the sustaining fiber dimming fiber ensemble of crayfish visual system (1998) J Neurophysiol, 80, pp. 2571-2583 
504 |a Glantz, R.M., Nudelman, H.B., Interval coding and band-pass filtering at oculomotor synapses in crayfish (1988) J Neurophysiol, 59 (1), pp. 56-76 
504 |a Glantz, R.M., Schroeter, J.P., A nonlinear encoder in crayfish sustaining fibers (2002) Neurocomputing, 44, pp. 109-114 
504 |a Glantz, R.M., Wyatt, C., Mahncke, H., Directionally selective motion detection in the sustaining fibers of the crayfish optic nerve: Linear and nonlinear mechanisms (1995) J Neurophysiol, 74 (1), pp. 142-152 
504 |a Harzsch S (2002) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 4;453(1):10-21; Kirk, M.D., Waldrop, B., Glantz, R.M., The Crayfish sustaining fibers. Morphological representation of visual receptive fields in the second optic neuropil (1982) J Comp Physiol A, 146, pp. 175-179 
504 |a Kirk, M.D., Waldrop, B., Glantz, R.M., The Crayfish sustaining fibers. II Responses to illumination, membrane properties and adaptation (1983) J Comp Physiol A, 150, pp. 419-425 
504 |a Kirk MD, Waldrop B, Glantz RM (1983b) A quantitative correlation of contour sensitivity with dendritic density in an identified visual neuron. Brain Res 12;274(2):231-237; Kleinlogel, S., Marshall, N.J., Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra (2006) J Exp Biol, 209 (Pt 21), pp. 4262-4272 
504 |a Leggett, L.M.W., Polarized light-sensitive interneurones in a swimming crab (1976) Nature, 262, pp. 709-711 
504 |a Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J Neurophysiol, 98 (4), pp. 2414-2428 
504 |a Oliva, D., Medan, V., Tomsic, D., Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathusgranulatus (Decapoda: Grapsidae) (2007) J Exp Biol, 210, pp. 865-880 
504 |a Pfeiffer, C., Glantz, R.M., Cholinergic synapses and the organization of contrast detection in the crayfish optic lobe (1989) J Neurosci, 9 (6), pp. 1872-1882 
504 |a Pfeiffer-Linn, C., Glantz, R.M., Gaba-mediated inhibition of visual interneurons in the crayfish medulla (1991) J Comp Physiol A, 168, pp. 373-381 
504 |a Porter, M.L., Pérez-Losada, M., Crandall, K.A., Model-based multi-locus estimation of decapod phylogeny and divergence times (2005) Mol Phylogenet Evol, 37 (2), pp. 355-369 
504 |a Romano, A., Locatelli, F., Freudenthal, R., Merlo, E., Feld, M., Ariel, P., Lemos, D., Fustiñana, M.S., Lessons from a crab: Molecular mechanisms in different memory phases of Chasmagnathus (2006) Biol Bull, 210 (3), pp. 280-288 
504 |a Shaw SR (1966) Polarized light responses from crab retinula cells. Nature 2;211(5044):92-93; Strausfeld, N.J., Crustacean-insect relationships: The use of brain characters to derive phylogeny amongst segmented invertebrates (1998) Brain Behav Evol, 52 (4-5), pp. 186-206 
504 |a Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J Comp Physiol A, 190, pp. 951-962 
504 |a Sztarker, J., Tomsic, D., Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations (2008) J Comp Physiol A, 194 (6), pp. 587-596 
504 |a Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of the optic lobes that support motion detection in a semi-terrestrial crab (2005) J Comp Neurol, 493, pp. 396-412 
504 |a Sztarker J, Strausfeld N, Andrew D, Tomsic D (2009) Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathusgranulatus. J Comp Neurol 10;513(2):129-150; Tomsic, D., de Astrada, B.M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J Neurosci, 23, pp. 8539-8546 
504 |a Tomsic D, Berón de Astrada M, Sztarker J, Maldonado H (2009) Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem. doi:10.1016/j.nlm.2009.01.004; Waldrop, B., Glantz, R.M., Synaptic mechanisms of a tonic EPSP in crustacean visual interneurons: Analysis and simulation (1985) J Neurophysiol, 54 (3), pp. 636-650 
504 |a Waterman, T.H., Wiersma, C.A.G., Electrical responses in decapod crustacean visual systems (1963) J Cell Comp Physiol, 61, pp. 1-16 
504 |a Wiersma, C.A.G., Oberjat, T., The selective responsiveness of various crayfish oculomotor fibers to sensory stimuli (1968) Comp Biochem Physiol, 26, pp. 1-16 
504 |a Wiersma, C.A.G., Yamaguchi, T., Neuronal components of the optic nerve of the crayfish as studied by single unit analysis (1966) J Comp Neurol, 128, pp. 333-358 
504 |a Wiersma, C.A.G., Yamaguchi, T., Integration of visual stimuli by the crayfish central nervous system (1967) J Exp Biol, 47, pp. 409-431 
504 |a Wiersma CAG, Roach JLM, Glantz RM (1982) Neural integration in the optic system. In: Sandeman DC, Atwood HL (eds) The biology of the crustacea, vol 4. Academic Press, pp 1-31; York, B., Wiersma, C.A.G., Visual processing in the rock lobster (crustacea) (1975) Prog Neurobiol, 5, pp. 127-166 
520 3 |a In crustaceans, sustaining (SN) and dimming (DN) neurons are readily identified by their distinct responses to a light pulse. However, morphological identification and electrophysiological characterization of these neurons has been achieved only in the crayfish. This study provides a description of SNs and DNs in a second crustacean species, the crab Chasmagnathus. SNs and DNs of the crab arborize extensively in the medulla and the axons project to the midbrain. Upon a light pulse, SNs depolarize and increase the firing rate while DNs hyperpolarize and reduce firing. These responses are highly consistent and their magnitudes depend on the intensity of the light pulse. When stimulated with a wide-field motion grating, SNs respond with a modulation of the membrane potential and spike frequency. We also characterized the responses of these neurons to a rotating e-vector of polarized light. SNs show the maximum depolarization when the e-vector approaches vertical. In contrast, DNs show maximal depolarization to near horizontal e-vector orientations. The semi-terrestrial crab and the crayfish inhabit unique light environments and exhibit disparate visual behaviors. Yet, we found that the location, morphology and physiology of SNs and DNs of the crab are nearly identical to those described in the crayfish. © Springer-Verlag 2009.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X 221 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2006-1189 
536 |a Detalles de la financiación: Acknowledgments We would like to thank Arpiar Saunders and Julieta Sztarker for fruitful discussions and corrections to this manuscript. This work was supported by the following research grants to D.T.: Universidad de Buenos Aires, grant number X 221; ANPCYT, grant number PICT 2006-1189. Experimental procedures were approved by the Institutional Animal Care and Use Committee at the Faculty of Natural Sciences, University of Buenos Aires, Argentina. 
593 |a Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellón 2 Ciudad Universitaria (1428), Buenos Aires, Argentina 
690 1 0 |a CRUSTACEA 
690 1 0 |a INTRACELLULAR RECORDINGS 
690 1 0 |a OPTIC LOBES 
690 1 0 |a BIOTIN 
690 1 0 |a DRUG DERIVATIVE 
690 1 0 |a NEUROBIOTIN 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a BIOPHYSICS 
690 1 0 |a BRACHYURA 
690 1 0 |a CLASSIFICATION 
690 1 0 |a CYTOLOGY 
690 1 0 |a EXCITATORY POSTSYNAPTIC POTENTIAL 
690 1 0 |a HISTOLOGY 
690 1 0 |a METABOLISM 
690 1 0 |a MOVEMENT PERCEPTION 
690 1 0 |a NERVE CELL 
690 1 0 |a PHOTOSTIMULATION 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a VISUAL SYSTEM 
690 1 0 |a ANIMALS 
690 1 0 |a BIOPHYSICS 
690 1 0 |a BIOTIN 
690 1 0 |a BRACHYURA 
690 1 0 |a EXCITATORY POSTSYNAPTIC POTENTIALS 
690 1 0 |a MOTION PERCEPTION 
690 1 0 |a NEURONS 
690 1 0 |a PHOTIC STIMULATION 
690 1 0 |a VISUAL PATHWAYS 
690 1 0 |a VISUAL PERCEPTION 
650 1 7 |2 spines  |a VISION 
650 1 7 |2 spines  |a VISION 
700 1 |a Tuthill, J.C. 
700 1 |a Tomsic, D. 
773 0 |d 2009  |g v. 195  |h pp. 791-798  |k n. 8  |p J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.  |x 03407594  |w (AR-BaUEN)CENRE-233  |t Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-69449091622&doi=10.1007%2fs00359-009-0448-1&partnerID=40&md5=b86cdafbf4e83c0d8139e689c8ae4b57  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00359-009-0448-1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03407594_v195_n8_p791_deAstrada  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v195_n8_p791_deAstrada  |y Registro en la Biblioteca Digital 
961 |a paper_03407594_v195_n8_p791_deAstrada  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69725