Calculation of hypershielding contribution to isotropic nitrogen shielding in strong magnetic fields

Hypershielding contributions to magnetic shielding of the nitrogen N nucleus have been evaluated for some nitroso (RNO) and isodiazene (R 1 R 2 NN) compounds in the presence of an external spatially uniform, time-independent magnetic field, accounting for cubic response via Rayleigh-Schrödinger pert...

Descripción completa

Detalles Bibliográficos
Autor principal: Boyd, J.
Otros Autores: Pagola, G.I, Caputo, María Cristina, Ferraro, Marta Beatriz, Lazzeretti, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14028caa a22009977a 4500
001 PAPER-8768
003 AR-BaUEN
005 20250314101001.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-66749124749 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Boyd, J. 
245 1 0 |a Calculation of hypershielding contribution to isotropic nitrogen shielding in strong magnetic fields 
260 |c 2009 
270 1 0 |m Boyd, J.; Department of Biochemistry, South Parks Road, Oxford, 0X1 3QU, United Kingdom 
504 |a Bachtold, A., Strunk, C., Salvetat, J.-P., Bonard, J.-M., Forró, L., Nussbaumer, T., Schöneberger, C., Aharonov-Bohm oscillations in carbon nanotubes (1999) Nature (London), 397, p. 673 
504 |a Zaric, S., Ostojic, G.N., Kono, J., Shaver, W., Moore, V.C., Strano, M.S., Hauge, R.H., Wei, X., Optical Signatures of the Aharonov-Bohm Phase in Single-Walled Carbon Nanotubes (2004) Science, 304, p. 1129 
504 |a Coskun, U.C., Wei, T.-C., Vishveshwara, S., Goldbart, P.M., Bezryadin, A., The Magnetic Flux Modulation of the Energy Gap in Nanotube Quantum Dots (2004) Science, 304, p. 1132 
504 |a Compernolle, S., Chibotaru, L.F., Ceulemans, A., Novel type of magnetic response in carbon nanomaterials (2006) Chem. Phys. Lett, 428, p. 119 
504 |a Compernolle, S., Chibotaru, L.F., Ceulemans, A., Vortices and their relation to ring currents and magnetic moments in nanographenes in high magnetic field (2006) J. Chem,. Phys. B, 110, p. 19340 
504 |a Rasolt, M., Tesanovic, Z., Theoretical aspects of supercon-ductivity in very high magnetic fields (1992) Rev. Mod. Phys, 64, p. 709 
504 |a Lai, D., Matter in strong magnetic fields (2001) Rev. Mod. Phys, 73, p. 629 
504 |a Proceedings of the 172nd WE-Heraeus-Seminar on Atoms and Molecules in Strong External Fields, Bad Honnef, Germany, April 7-11, 1997. In Atoms and Molecules in Strong External Fields, 2nd ed.; Schmeicher, P., Schweizer, W., Eds.; Springer: New York, USA, 1998; Runge, K., Sabin, J.R., Introduction to the Workshop on Properties of Molecules in Strong Magnetic Fields (1997) Int. J. Quantum Chem, 64, p. 495. , and references therein 
504 |a Ramsey, N.F., Possibility of Field-Dependent Nuclear Magnetic Shielding (1970) Phys. Rev. A, 1, p. 1320 
504 |a Vaara, J., Manninen, P., Lounila, J., Magnetic Field-Dependence of Nuclear Magnetic Shielding in Closed-Shell Atomic Systems (2003) Chem. Phys. Lett, 372, p. 750 
504 |a Manninen, P., Vaara, J., Magnetic-field dependence of 59 Co nuclear magnetic shielding in Co(III) complexes (2004) Phys. Rev. A, 69, p. 022503 
504 |a Pagola, G.L., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Calculation of the fourth-rank hypermagnetizability of some small molecules (2004) J. Chem. Phys, 120, p. 9556 
504 |a Pagola, G.L., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Non-linear ring currents: Effect of strong magnetic fields on π-electron circulation (2004) Chem. Phys. Lett, 400, p. 133 
504 |a Pagola, G.L., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Nonlinear response of the benzène molecule to strong magnetic fields (2005) J. Chem. Phys, 112, p. 074318 
504 |a Pagola, G.L., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Fourth-rank hypermagnetizability of medium-size planar conjugated molecules and Mierene (2005) Phys. Rev. A, 72. , 033401:1 
504 |a Pagola, G.L., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Sum rules for invariance of the fourth-rank hypermagnetis-ability in a gauge translation (2005) Chem. Phys. Lett, 408, p. 403 
504 |a Pagola, G.L., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Calculation of the fourth-rank nuclear magnetic hypershielding of some small molecules (2006) Phys. Rev. A, 74, p. 022509 
504 |a Žaucer, M., Aḿan, A., Magnetic Field-Dependent Molecular Susceptibility (1977) Phys. Rev. A, 16, p. 475 
504 |a Soncini, A., Fowler, P.W., Non-linear ring currents: Effect of strong magnetic fields on π-electron circulation (2004) Chem. Phys. Lett, 400, p. 213 
504 |a Tellgren, E.L., Soncini, A., Helgaker, T., Nonperturbative ab initio calculations in strong magnetic fields using London orbitals (2008) J. Chem. Phys, 129, p. 154114 
504 |a Ramsey, N.F., Magnetic Shielding of Nuclei in Molecules (1950) Phys. Rev, 78, p. 699 
504 |a Abragam, A., (1961) The Principles of Nuclear Magnetism, p. 279. , Oxford: Clarendon Press: London 
504 |a Epstein, S.T., (1974) The Variation Method in Quantum Chemistry; California University, , Academic Press: New York 
504 |a Bothner-By, A.A., Magnetic Field Induced Alignment of Molecules (1995) Encyclopedia of Nuclear Magnetic Resonance, pp. 2932-2938. , Grant, D. M, Harris, R. K, Eds, John Wiley & Sons: Chichester 
504 |a Ottiger, M., Tjandra, N., Bax, A., Magnetic Field Dependent Amide 15 N Chemical Shifts in a Protein-DNA Complex Resulting from Magnetic Ordering in Solution (1997) J. Am. Chem. Soc, 119, p. 9825 
504 |a Lipari, G., Szabo, A., Model-free approach to the interpretation of nuclear magnetic resonance (1982) J. Am. Chem. Soc, 104, p. 4546 
504 |a Lipari, G., Szabo, A., Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results (1982) J. Am. Chem. Soc, 104, p. 4559 
504 |a Werbelow, L.G., Dynamic Frequency Shift (1995) Encyclopedia of Nuclear Magnetic Resonance, pp. 1776-1783. , Grant, D. M, Harris, R. K, Eds, John Wiley & Sons: Chichester 
504 |a Baker, M.R., Anderson, C.H., Ramsey, N.F., Nuclear Magnetic Antishielding of Nuclei in Molecules. Magnetic Moments of F19, N14, and N15 (1964) Phys. Rev, 133, pp. A1533 
504 |a Saika, A., Slichter, C.P., A Note on the Fluorine Resonance Shifts (1954) J. Chem. Phys, 22, p. 26 
504 |a Herbison-Evans, D., Richards, R.E., 14N chemical shifts in organic compounds (1964) Mol. Phys, 8, p. 19 
504 |a Lambert, J. B.; Roberts, J. D. Nitrogen-15 Magnetic Resonance Spectroscopy. V. Oxygen-Nitrogen Compounds. J. Am. Chem. Soc. 1965, 87, 4087; Dervan, P. B.; Squillacote, M. E.; Lahti, P. M.; Sylwester, A. P.; Roberts, J. D. Nitrogen-15 NMR spectrum of a 1,1-diazene. N-(2,2,6,6- tetramethylpiperidyl)nitrene. J. Am. Chem. Soc. 1981, 103, 1120; Witanowski, M., Biedrzycka, Z., Webb, G.A., Solvent Effects on the Nitrogen NMR Shielding of 2-Methyl-2-nitrosopropane and its Azodioxy Dimer (1996) Maen. Reson. Chem, 34, p. 233 
504 |a http://www.kjemi.uio.no/software/dalton, DALTON, An electronic structure program, Release 2.0; accessed Feb 24, 2006, 2005; Dunning Jr., T.H., Gaussian Basis Set for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen (1989) J. Chem. Phys, 90, p. 1007 
504 |a Woon, D.E., Dunning Jr., T.H., Gaussian basis sets for use in correlated molecular calculations. V. Coreion valence basis sets for boron through neon (1995) J. Chem. Phys, 103, p. 4572 
504 |a Ligabue, A., Sauer, S.P.A., Lazzeretti, P., Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach (2003) J. Chem. Phys, 118, p. 6830 
504 |a The aug-cc-pCVTZ/CTOCD-uc and sp tt d tt f 2 /sp t d basis sets can be downlowed from http://fyskem.ki.ku.dk/sauer/BasisSets; Sauer, S.P.A., Paidarová, L., Oddershede, J., Correlated and Gauge Origin Independent Calculations of Magnetic Proper-ties. II. Shielding Constants of Simple Singly Bonded Molecules (1994) Theor. Chim. Acta, 88, p. 351 
504 |a Sauer, S.P.A., Paidarová, L., Oddershede, J., Correlated and Gauge Origin Independent Calculations of Magnetic Proper-ties. I. Triply Bonded Molecules (1994) Mol. Phys, 81, p. 87 
504 |a Huzinaga, S., Andzelm, J., Klobukowsi, M., Radzio-Andzelm, E., Sakai, Y., Tatewaki, H., (1984) Gaussian Basis Sets for Molecular Calculations, , Elsevier: Amsterdam 
504 |a Lazzeretti, P., Malagoli, M., Zanasi, R., Sistemi informatici e calcolo parallelo Research Report, , Technical report on project, 1/67, CNR, 1991 
504 |a Becke, A.D., Density-functional termochemistry. III. The role of exact exchange (1993) J. Chem. Phys, 98, p. 5648 
504 |a Petersson, G.A., Bennett, A., Tensfeldt, T.G., Al-Laham, M.A., Shirley, W.A., Mantzaris, J., A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements (1988) J. Chem. Phys, 89, p. 2193 
504 |a Petersson, G.A., Tensfeldt, T.G., Montgomery Jr., J.A., A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods (1991) J. Chem. Phys, 94, p. 6091 
504 |a Keal, W., Tozer, D.J., The exchange-correlation potential in Kohn-Sham nuclear magnetic resonance shielding calculations (2003) J. Chem. Phys, 119, p. 3015 
504 |a Keal, W., Tozer, D.J., A semiempirical generalized gradient approximation exchange-correlation functional (2004) J. Chem. Phys, 121, p. 5654 
504 |a Ligabue, A., Sauer, S.P.A., Lazzeretti, P., Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory (2007) J. Chem. Phys, 126, p. 154111 
504 |a Kongsted, J., Aidas, K., Mikkelsen, K.V., Sauer, S.P.A., On the accuracy of density functional theory to predict shifts in nuclear magnetic resonance shielding constants due to hydrogen bonding (2008) J. Chem. Theor. Comput, 4, p. 267 
504 |a Soffe, N., Boyd, J., Leonard, M., The construction of a high-resolution 750 MHz probehead (1995) J. Maen. Reson. A, 16, p. 117 
504 |a Lumsden, M.D., Wu, G., Wasylishen, R.E., Curtis, R.D., Solid-state nitrogen-15 NMR studies of the nitroso group in the nitrosobenzene dimer and p-nitroso-N, N-dimethylaniline (1993) J. Am. Chem. Soc, 115, p. 2825 
504 |a Boyd, J., Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., To be published; Sturz, L., Dölle, A., Anisotropic Reorientational Dynamics of Toluène in Neat Liquid. A 13 C Nuclear Magnetic Relaxation Study (2001) J. Phys. Chem. A, 105, p. 5055 
504 |a Mohr, P.J., Taylor, B.N., CODATA Recommended Values of the Fundamental Physical Constants: 2002 (2005) Rev. Mod. Phys, 77, p. 1 
504 |a Andersson, L.O., Mason, J.B., van Bronswijk, W., Nitrogen Nuclear Magnetic Resonance. Part 1. The Nitroso(Nitrosyl) Group (1970) J. Chem. Soc. A, 1970, p. 296 
504 |a Jameson, C.J., Jameson, A.K., Oppusunggu, D., Wille, S., Burrell, P.M., Mason, J., 15N Nuclear Magnetic Shielding Scale from Gas Phase Studies (1981) J. Chem. Phys, 74, p. 81 
504 |a Witanowski, M., Biedrzycka, Z., Sicinska, W., Webb, G.A., Solvent-Induced Effects on the Nitrogen NMR Shieldings of Some Nitrosobenzene Systems (1997) Magn. Reson. Chem, 35, p. 262 
506 |2 openaire  |e Política editorial 
520 3 |a Hypershielding contributions to magnetic shielding of the nitrogen N nucleus have been evaluated for some nitroso (RNO) and isodiazene (R 1 R 2 NN) compounds in the presence of an external spatially uniform, time-independent magnetic field, accounting for cubic response via Rayleigh-Schrödinger perturbation theory. Numerical estimates have been obtained at the coupled Hartree-Fock level of accuracy within the conventional common-origin approach. Medium-size basis sets of gaugeless (that is, without gauge-including phase factors) Gaussian functions have been employed in a numerical test to show that the isotropic hypershielding contribution τ N B N , τ N = 1/2〈Σ N αβγδ 〉, eqs 2-4 in the text, to average nitrogen shielding in PhNO (τ N ≈ 1.1 × 10 -5 ppm T -2 ), (CH 3 ) 3 CNO (τ N ≈ 2.3 × 10 -5 ppm T -2 ), and (CH 3 ) 2 NN (τ N ≈ 4.4 × 10 -5 ppm T -2 ) are similar and quite large. For 15 N at the highest currently available high-resolution NMR field strength of 22.3 T (ω H /2π = 950 MHz, ω 15N / 2π = 96.3 MHz) the change due to the additional shielding contribution for these compounds is between ∼0.5 and ∼2 Hz to lower frequency (upfield). Employing modern NMR instrumentation, shielding perturbations of this magnitude are, in principle, within detection limits, although instrumental instabilities and other field-dependent shielding phenomena make unambiguous detection at different field strengths difficult. © 2009 American Chemical Society.  |l eng 
593 |a Department of Biochemistry, South Parks Road, Oxford, 0X1 3QU, United Kingdom 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. I, (1428) Buenos Aires, Argentina 
593 |a Dipartimento di Chimica, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy 
593 |a Carrera del Investigador del CONICET, Argentina 
700 1 |a Pagola, G.I. 
700 1 |a Caputo, María Cristina 
700 1 |a Ferraro, Marta Beatriz 
700 1 |a Lazzeretti, P. 
773 0 |d 2009  |g v. 5  |h pp. 1343-1349  |k n. 5  |p J. Chem. Theory Comput.  |x 15499618  |t Journal of Chemical Theory and Computation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-66749124749&doi=10.1021%2fct900034d&partnerID=40&md5=253ac489918a0004d0cb7fa998c03eb1  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ct900034d  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15499618_v5_n5_p1343_Boyd  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v5_n5_p1343_Boyd  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_15499618_v5_n5_p1343_Boyd  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI